
C H A L L E N G E S I N T H E I N T E G R AT I O N O F
D O M A I N - S P E C I F I C A N D S C I E N T I F I C B O D I E S O F
K N O W L E D G E I N M O D E L - D R I V E N E N G I N E E R I N G

eric miotto

Supervisor
prof . tullio vardanega

Tesi per la laurea specialistica in Informatica

Dipartimento di Matematica Pura ed Applicata
Facoltà di Scienze Matematiche, Fisiche e Naturali

Università degli Studi di Padova

September 2009

C H A L L E N G E S I N T H E I N T E G R AT I O N O F
D O M A I N - S P E C I F I C A N D S C I E N T I F I C B O D I E S O F
K N O W L E D G E I N M O D E L - D R I V E N E N G I N E E R I N G

September 2009

candidate Eric Miotto

supervisor prof. Tullio Vardanega

A B S T R A C T

Through the use of models and transformations and the recognition
of the importance of application domains, Model Driven Engineering
(MDE) promises to raise the quality of software systems and to lower
the development effort. However, the successful leverage of Model
Driven Engineering is fraught with several important problems and
choices: we must be aware of these and tackle them to obtain a devel-
opment environment that is effective, sound and affordable.

With this concern in mind we address two important problems:

• the definition of Domain Specific Languages, which express do-
main concepts and form the foundation for the implementation
of all the features of the development environment (editors, trans-
formations, serialization, view management, . . .);

• the complexity of proving the correctness of transformations. This
complexity is high and we need to tame it to the maximum extent
possible.

We first discuss these problems from a scientific point of view and
we propose some reasoned solutions. Next we explore the feasibility of
these solution by evaluating whether and at what cost current available
technologies in Eclipse permit to implement them.

P U B L I C AT I O N S

Some ideas and figures (in particular the content of chapter 3) have
appeared previously in [1].

The technical investigation discussed in chapter 4 has been inserted
in [2] and submitted to DATE2010.

v

C O N T E N T S

1 introduction 1

1.1 Thesis organization 3

1.2 Notation 3

2 model driven engineering 5

2.1 An overview of Model Driven Engineering 5

2.1.1 Models as means to specify systems 6

2.1.2 Transformations as means to obtain implementation 10

2.2 Model Driven Architecture 12

2.3 Acknowledging scientific bodies of knowledge 14

2.4 Summary 17

3 applying mde in the real world 19

3.1 Problem One: How to define DSL 19

3.1.1 Definition of UML profiles 20

3.1.2 MOF and UML 21

3.1.3 Tools for creating DSL 22

3.1.4 Additional considerations 22

3.2 Problem Two: Proving the correctness of transformations 22

3.2.1 Creating PIM from concern specific views 23

3.2.2 Incremental PIM construction 25

3.2.3 Number of metamodels 27

3.3 Summary 28

4 technological investigation 31

4.1 Reviewed tools 32

4.2 Requirements 35

4.2.1 DSL definition 35

4.2.2 View management 36

4.2.3 Effort spent on tool construction 36

4.3 EMF and GMF 36

4.3.1 DSL definition 36

4.3.2 View management 41

4.3.3 Effort spent on tool construction 44

4.4 UML2Tools 45

4.4.1 DSL definition 45

4.4.2 View management 47

4.4.3 Effort spent on tool construction 48

4.5 MDT Papyrus 49

4.5.1 DSL definition 49

4.5.2 View management 49

4.5.3 Effort spent on tool construction 50

4.6 Evaluation 50

4.6.1 Assessment of requirement satisfaction 50

4.6.2 Obtaining synthetic rating 50

4.6.3 Final ratings 51

4.7 Considerations 53

4.8 Summary 54

5 conclusions 57

vii

viii contents

a architecture of gmf 63

a.1 GMF Runtime 63

a.2 GMF Tooling 64

a.3 Dependencies 65

b detailed characteristics of analyzed tools 67

c some advices on emf and gmf 69

c.1 Extrinsic ID 69

c.2 Shortcut mechanism 69

bibliography 71

glossary 77

acronyms 81

1I N T R O D U C T I O N

In September 2004 a research project called ASSERT (Automated proof-
based System and Software Engineering for Real-Time applications)
[3] was started, partially funded by the European Commission under
the Sixth Framework Programme (FP6). ASSERT lasted for three years,
was led by the European Space Agency and was participated by in-
dustrial and academic partners. The aim of this project was the defini-
tion of a development process for high-integrity and real-time systems
such that it could guarantee the respect of non functional requirements
(for example temporal deadlines or memory occupation) not through
ad-hoc proofs done after the construction but through a construction
approach that is proved correct once and for all.

Indeed, in current approaches to software engineering, construction
techniques deal only to the mere implementation but not with the ver-
ification of the satisfaction of requirements, and the fulfillment of re-
quirements can be proved only once the system is implemented. For
these reasons, the employed verification techniques are usually general
and thus not very informative (e.g. testing can find bugs but cannot
prove their absence). Even if some ad-hoc techniques specific for sys-
tem are devised (with the shame that they cannot be reused with other
systems), the point is that the system is already implemented and it is
needed to return again to its design and construction to fix the prob-
lems – this can be very expensive and there is the risk to introduce
new unanticipated bugs. We can name this approach as construction-
by-correction [4] – a working system is obtained by means of repeated
constructions and verifications.

On the contrary, in other mature engineering fields, the system (let
it be a bridge or a chip) is not immediately built, but it is first modeled
using patterns and solutions apt for its class, devised so to permit the
verification of relevant properties. This way it is not necessary to build
the system to detect its defects, but they can be found in the design
phase, with the great advantage that it is known exactly how to deal
with them and that further problems will be properly detected thanks
to the employed patterns and solutions. The construction of a system
is started only when the design meets all the requirements (to a cer-
tain degree). We can refer to this approach as correctness-by-construction
[4] – a working system is built by means of proven modeling and de-
sign. So, to coin a slogan, ASSERT wanted to devise a correctness-
by-construction approach to replace the construction-by-correction ap-
proach largely employed in software engineering.

Among its results, ASSERT recognized the suitability of Model Driven
Engineering (MDE) for the construction of real-time software [5]. Model
Driven Engineering advocates the construction of better software with
less effort through: (i) the use of models for software specification in
place of source code; and (ii) the use of automated transformations to
obtain the final system from these models. (The terms “model” and
“transformation” will be defined more precisely in chapter 2, for now
their intuitive meaning should suffice.)

1

2 introduction

ASSERT also showed that MDE should be applied in a proper way
in order to achieve its maximum effectiveness. In fact, the mere use of
models and transformations is not sufficient to harvest the benefits of
MDE. For example, at first glance we may think that a system should
be described by a single model. This approach is apt for small systems,
but for large ones the model would cram too many concerns and this
renders its specification and its comprehension challenging and dif-
ficult. If this and other problems are not tackled, MDE can be more
expensive than traditional approaches.

In March 2009 the CHESS project (Composition with Guarantees
for High-integrity Embedded Software Components ASsembly) took
up from the conclusions of ASSERT in order to realize a fully func-
tional prototype of an MDE environment for high-integrity real-time
systems. It should be quite clear that in CHESS it is needed to employ
methodologies that are not only sound from a scientific point of view;
it is required to implement them using current available technology
and without spending too much development effort. Indeed a costly
approach can hamper the effectiveness, the maintainability and the
longevity of the environment.

In the context of CHESS, we are concerned with the construction
an MDE development environment with the following two character-
istics:

1. sound leverage of application domains. Software systems should be
specified using concepts of the application domain of interest
and not through generic computation concepts. Nevertheless, we
should be aware that different application domains can share
common concerns and we should strive to share also their solu-
tions;

2. guarantee of correctness-by-construction in a sound, provable and af-
fordable way. We should ensure statically that generated applica-
tions respect their non functional requirements.

In particular, we recognize two important problems:

• the definition of Domain Specific Languages (DSL) for the specification
of models. These languages are crucial because: (i) they permit to
express concepts of the particular application domain (whence
their name); and (ii) they influence the construction of the rest
of the development environment (editors, transformations, seri-
alization, . . .). They should be defined properly and in a way
that guarantees longevity. At the present time we can choose to
define DSL using UML 2.x profiles or metamodeling;

• the complexity of proving the correctness of transformations. Espe-
cially in the context of real-time systems, we need to ensure that
transformations do not introduce arbitrary semantics in output
models. We say that a transformation from a model A to a model
B is correct if: (i) the semantics of B contains the semantics of A;
(ii) the semantics we add to B does not contradict the semantics
contained in A.

Proving the correctness of transformations is intrinsically a daunt-
ing task. Anyway we want to construct our environment in order
to avoid accidental increments in the complexity of these proofs,

1.1 thesis organization 3

and so we want to find the factors that can have the greatest
impact on complexity and treat them appropriately.

These problems must first be discussed from a methodological point
of view, in order to find out solutions that have a scientific support.
Next it is necessary to verify whether, to which degree and with which
effort the current available technology enables us to implement these
solutions. A sound solution that requires too much effort to be im-
plemented and maintained is not attractive and it may hamper the
effectiveness of the development environment.

1.1 thesis organization

The thesis elaborates on these problems, their proposed solutions and
the support that we found in state-of-the-art tools. We start in chapter
2 with an extended introduction to Model Driven Engineering. Firstly
we explain the tenets of MDE, in particular the importance of appli-
cation domains, models and transformations; secondly we describe
Model Driven Architecture (MDA), a particular MDE initiative that
we refer to in the next chapter; thirdly we discuss about the nature
of application domains, underlining the need to recognize transversal
concerns and the necessity to resolve them once and for all using sci-
entific methods.

In chapter 3 we elaborate on the two problems we stated above, ar-
guing their appropriateness and devising if possible some ways to ad-
dress them. The tone of this chapter is scientific and methodological.

To determine the concrete feasibility of our proposals, in chapter 4

we study technologies available in Eclipse and we evaluate whether
and to which extent they permit to implement the solutions devised in
the previous chapter.

Finally, in chapter 5 we sum up our work and highlight the main
contributions.

1.2 notation

In the thesis we adopt the following typographical conventions:

• URL are in brown typewriter fonts, e.g. http://www.uml.org/;

• section, list, page, glossary and figure references are written in
blue font, e.g. chapter 1;

• bibliography references are written in green font, enclosed in
square brackets, e.g. [3];

• references to part of cited documents are written with the Kurier
font [6], e.g. metamodelReference;

• for code we use sans serif text with syntax highlighting, e.g.
int i=5;;

• file names, paths, menu items and buttons are written in type-
writer font, e.g. /usr/local/ .

http://www.uml.org/

2M O D E L D R I V E N E N G I N E E R I N G

This chapter begins with a detailed description of Model Driven Engi-
neering; next we present Model Driven Architecture, a particular MDE
approach from which we borrow concepts and terminology; in conclu-
sion we discuss about the role of scientific bodies of knowledge in
complementing application domains.

2.1 an overview of model driven engineering

In the development of software we are continuously challenged by the
demand for increased productivity, high quality and shorter time-to-
market. In other words, as time passes we must develop software that:
(i) contains a larger number of functionalities; (ii) fulfills its specifica-
tion to the maximum possibile extent; and (iii) requires less effort and
time to be produced and maintained.

At present, software is implemented using programming with more
manual work than automation. Current programming languages are
quite effective to facilitate manual programming, since they abstract
from low level computation details (such as the architecture of pro-
cessors) and provide powerful concepts and utilities (like classes and
libraries) that can be used to render concepts of an application domain.
Nevertheless, this approach has two main shortcomings:

1. despite the high level of abstraction, we are still bound to the com-
putation domain and this makes it quite difficult to translate prob-
lem concepts into proper concepts of programming languages. We
can obviously express domain specific concepts with them, but the
semantics of the application domain – the one we are ultimately in-
terested in – is buried under the semantics of computation. Hence
program comprehension and verification become more problematic
and – even worse – it’s difficult to relate software components to
the requirements they are meant to satisfy;

2. we are bound to the employed technology and thus changing it
requires great manual effort on updating the code, even though
the scope of the system remains the same. In fact, programming
languages permit to change the underlying processor architecture
without major problems, but this is not enough.

Model Driven Engineering (MDE) [4, 7, 8] is an approach to soft-
ware engineering that addresses these two problems with the addi-
tional goal to guarantee increased productivity and increased quality.
In particular MDE promotes:

1. the use of models at various levels of abstraction described with Do-
main Specific Languages (DSL) as a vehicle for system specification;

2. the use of automated transformations to progressively turn the user
model into a software product ready for final compilation, binding
and deployment.

5

6 model driven engineering

In the next two sections we explain in detail how these two character-
istics allow to tackle the highlighted deficiencies of current approaches.

2.1.1 Models as means to specify systems

MDE proposes models as first-class artifacts for software development.
A model is a simplification of a system that can be used in place of this
to verify some properties of interest. The use of models is common in
engineering disciplines, since they permit to represent systems in a
simplified way, which in turn enables the user to reason more easily
about properties of the final products. Moreover, they allow the user
to validate the design especially in the early phases, thus avoiding to
produce and waste prototypes only to detect small design flaws. Ac-
cording to this definition, we might argue that: (i) source code can be
considered a model (since it represents at high level an executable sys-
tem written in machine code); and (ii) models are already employed by
practitioners, thanks to the popularity of Unified Modeling Language
(UML). In fact, in MDE the word model is used in a narrower and
more specific meaning:

(i) source code is surely a model but it lacks an important character-
istic of MDE models: understandability [7]. In other words, mod-
els should express in a clear way the main concerns of the system
under study: users should put little parsing effort to understand
it. As we mentioned before, source code doesn’t show clearly the
functions of a software system, as computation concepts and ab-
stractions tend to prevail. This fact hampers the comprehension
of the system, especially by the stakeholders who, as domain ex-
perts, could notice incongruences more readily if we could pro-
vide them with a model that expresses distinctly the concepts
of the application domain. Thus, in MDE models should mainly
contain domain concepts and for this reason source code is not
considered a model;

(ii) nowadays models are often employed in software development
but they tend to be used as support to the documentation or as
mere guideline to the programmer on how to produce the final
code. Moreover, syntax and semantics of these models are often
stated in a rather informal way. In MDE instead models have a
central role, as they guide the entire development process – and
thus their syntax and semantics should be defined precisely and
without ambiguity.

To summarize, models in MDE should state requirements and func-
tionalities of software with explicit reference to the application do-
mains of interest, so that they emerge clearly without being obfus-
cated by concepts unnecessary for their comprehension, like compu-
tation concepts. This way models can be even manipulated directly
by domain experts without any intermediation of software developers:
software specification will consequently be more aligned with users’
needs.

As a consequence, models in MDE have a higher longevity than
source code. Indeed, source code tend to rapidly become obsolete,
and most of the times this is not due to changed requirements but
to technological reasons, independent from the functionalities. Com-
mon causes of source code obsolescence are changes in the interface

2.1 an overview of model driven engineering 7

of third party libraries and the adoption of a new software platform.
Instead a model contains only domain concepts, and thus its content
will remain unchanged and valid despite all the technological changes
we might experience during software development. Let us note that
we must alter the model to accomodate new or revised requirements;
but this is necessary and desired, while we want to avoid changes to
the model due only to technological reasons.

Models are specified using languages – much like source code. Since
modeling languages contains concepts of application domains, they
are called Domain Specific Languages (DSL). Their definition is ex-
tremely important and should be done very thoroughly, because the
understandability and the technological independence of a model are
determined by how well the DSL let us describe the system with re-
spect to the application domain. For this reason in the remainder of
this section we discuss this topic in depth.

In which way should we specify a modeling language? Without go-
ing into unnecessary details, a language is simply a set of valid “sen-
tences” – a “sentence” can be a program for the C language or a class
diagram for the UML language. The problem is that the number of
these sentences is infinite and we can’t enumerate them, thus we need
to describe the rules to construct valid sentences. A model serves well
this purpose since we need to abstract from the fact that the language
is an infinite set: for example, grammars and finite state automata are
commonly used to specify the syntax of a language and can be re-
garded as models.The model used to describe a modeling language is
called a metamodel (figure 2.1) and it is made up of:

• the abstract syntax, which specifies the concepts we can talk about
and their relationships. The abstract syntax might include also
additional explicit constraints;

• the concrete syntaxes, which specify in which way the abstract syn-
tax is represented and stored. A concrete syntax can be textual
or graphical;

• the semantics, which specifies the meaning of each concept. Per-
haps this is the most important aspect of the metamodel.

It is now opportune to provide an example to clarify the concepts
related to metamodels. A political map of the world can be considered
a model of political geographical assets of the planet. A limited but
reasonable metamodel for the map can be defined as follows (figure
2.3):

• its abstract syntax is made up of the concept of state, of the rela-
tionship of borders between states and of the constraint that two
states cannot overlap;

• its concrete syntax is the usual graphical syntax of maps, in
which states are colored regions and borders are black lines be-
tween states;

• its semantics asserts that a state represents a physical region of
the planet which, in proportion, has the same shape and posi-
tion and that a border represents a physical contact between two
physical regions.

8 model driven engineering

!"#$% &'()$*

+$,-$($.)(

!"#$%/.01

%2.0320$
!$)2*"#$%

&,$4/5/$#

3(/.0

+$,-$($.)(

6".5"-*(1)"

Figure 2.1: A model represents or specifies a system in which we are in-
terested. This model should be specified using a language,
that contains the concepts and relationships of the domain
of interest. Quite logically in the context of MDE, the lan-
guage is specified using a model, which is called metamodel
to underline that it talks about the way models are speci-
fied. For the sake of simplicity, we can say that a model is
conformant to a given metamodel, without citing explicitly
the language that “stands” between the two. This figure is
inspired by [9].

!"#$%&

!$'()"#$%&

!"*$+,"-,*$'$

!"*$+(.&'*(,'

Figure 2.2: The relationships and characteristics of models and meta-
models can be effectively depicted with a pyramid. At the
bottom we find the models, which are concrete in that they
represent systems we are directly interested in (e.g. a soft-
ware); at the top we find the metamodels, which are some-
what abstract since they are used to establish the concepts
and the relationships we can use in models. The level of
models has a wider width that the one of metamodels be-
cause we need and produce more models than metamodels.
This figure is inspired by [9].

2.1 an overview of model driven engineering 9

!""#$%&'()*+('&+#)(,

-'&'(

.#/)(/"*#0

1

2334

!."'/&$'

"50'&6

7#0$/('(

"50'&6

-(+&0'%$"

8#)(,

Figure 2.3: A concrete example of a metamodel and its associated el-
ements for a political map of the planet. The abstract syn-
tax, represented with an UML class diagram, is made of
the the concept of state and the relationship of bordering;
the concrete syntax is composed of colored regions and
lines; the semantics maps the concepts to the physical enti-
ties of the Earth. (Political map obtained from http://gunn.

co.nz/map/; Earth image courtesy of NASA Visibile Earth,
http://visibleearth.nasa.gov/view_rec.php?id=2429)

The name metamodel intuitively suggests that this model has a spe-
cific purpose in that talks about models – that is it is used to specify
how models of a certain kind are built, while usually a model is used
to describe concrete systems like a software, a house or a car. For this
reason, metamodels are considered more abstract than regular models.
It’s also reasonable that the number of metamodels we may need is less
that the number of models we specify: indeed with a single language
we express multiple models. Thus we can assume to have a little pyra-
mid (figure 2.2), with the models at the bottom and the metamodels at
the top.

Since metamodels are themselves models, we need a language to
specify them. We can continue this reasoning endlessly, and we can
expect that the more we raise the level of abstraction the less models
we need (figure 2.4). From these statements we understand that in the
context of MDE it does not make sense to add too many levels, instead
we should stop and provide at the highest level a model that is able to
express, in addition to models at the bottom level, all the models that
pertain to its level including itself. We could do this inside the meta-
models – UML will be a suitable language (in fact we just need its class
diagram) but this will be exceedingly confusing. MDE researchers pre-
fer to add a level above metamodels in which we put only a specialized
model that is used to describe the metamodels and itself. Sometimes
this model is called metametamodel. This might sound weird at first,

http://gunn.co.nz/map/
http://gunn.co.nz/map/
http://visibleearth.nasa.gov/view_rec.php?id=2429

10 model driven engineering

!"#$%&

!$'()"#$%&

!"*$+,"-,*$'$

!"*$+(.&'*(,'

!$'()$'()"#$%&

!

!

Figure 2.4: The pyramid containing models and metamodels can be-
come infinitely tall. As we raise the level of abstraction, the
number of models in each individual will decrease and they
become increasingly less useful.

but we should recall that for example English dictionaries and gram-
mars, models of the English language, are themselves written in En-
glish. All this discussion is summarized in figure 2.5.

To recapitulate, we present a concrete example to better illustrate
the concepts of model, metamodel and metametamodel, which is also
depicted in figure 2.6. Let us consider a (tiny) software system: this can
be represented using a component diagram, which thus has the role of
the model. This diagram contains specific components and interfaces,
for example the component foobar. The component diagram is speci-
fied with the UML language: the latter is specified through the meta-
model described in the UML superstructure [17]. For instance, in this
metamodel we find all the allowed entities in a component diagram,
like the component and the interface. The concrete component foobar
can be seen as a concrete instance of the component entity of the UML
metamodel. The UML metamodel is described using the Meta Object
Facility (MOF) language, an OMG specification for the specification
and management of metamodels. In turn, MOF is described with a
metametamodel, which contains the allowed concepts we can express
in the UML metamodel. MOF has the concept of class that is used to
render the component and interface entities in the UML metamodel.

2.1.2 Transformations as means to obtain implementation

In spite of their utmost importance, models alone are not sufficient:
we need a way to automatically generate the final system from the
various models we may specify. We can do this manually, similarly to

2.1 an overview of model driven engineering 11

!"#$% &'()$*
+$,-$($.)(

!"#$%/.01

%2.0320$
!$)2*"#$%

&,$4/5/$#

3(/.0

+$,-$($.)(

!$)2*"#$%/.01

%2.0320$
!$)2*$)2*"#$%

&,$4/5/$#

3(/.0

&,$4/5/$#

3(/.0

+$,-$($.)(

6".5"-*(1)"

6".5"-*(1)"

6".5"-*(1)"

Figure 2.5: Generalization of figure 2.1 that acknowledges the neces-
sity for a language to specify metamodels and thus also for
a metametamodel to define this language. As highlighted
by figure 2.4, we need only this metametamodel and there
is no need to continue further: thus the metametamodel is
used to describe itself, as English dictionaries and gram-
mars are themselves written in English. This figure is in-
spired by [9].

what happens when we use models informally; but this way we lose
control on how the features of a model are implemented, with the risk
of obtaining suboptimal solutions and – even worse – with the risk
that similar parts of the model are translated with different code.

MDE instead advocates the use of transformations, which given one
or more models and some parameters generate one or more models
at a lower level of abstraction, used for specifying additional imple-
mentation detail (execution platform, . . .) or for specific purposes (for
example static analysis). In addition a transformation could output
source code that implements the system.

Thus transformations help ensure that produced artifacts are consis-
tent with the input models. Moreover, they contribute to augmenting
the longevity of the models with regard to technology: in fact if we
need to change the underlying platform or we need to target multiple
platforms, we only need to change the transformation or devise new

12 model driven engineering

!"#$"%&%'(

)*+,-+#

."/'0+-&(

121'&#

3&$-&1&%'1

456(

7+%,8+,&

456(

#&'+#")&7

.$&9*/*&)

81*%,

3&$-&1&%'1

5:;(7+%,8+,&
5:;(

#&'+#&'+#")&7

.$&9*/*&)

81*%,

.$&9*/*&)

81*%,

3&$-&1&%'1

!"%/"-#1('"

!"%/"-#1('"

!"%/"-#1('"

/""<+-

!"#$"%&%'

!7+11

=%1'+%9&("/

=%1'+%9&("/

Figure 2.6: Instantiation of figure 2.5 to a concrete example. A soft-
ware system can be described with a component diagram,
which is its model. This diagram contains concrete compo-
nents and is specified using UML, which is described using
the metamodel we find in OMG specifications. That meta-
model defines the concept of component. In turn, the UML
metamodel is specified using the MOF language, which
is described using the MOF metametamodel. For instance,
this metametamodel contains the concept of class, used to
model the concept of component in the UML metamodel.

ones, without touching the model, which is inherently durable because
it express only domain concepts.

2.2 model driven architecture

MDE is stated in a quite general way, without dictating any particular
approach – we are not told which models to use to specify a system
and which transformations to employ to obtain the final implementa-
tion. Instead it is useful to refer to a particular approach in order to
better discuss about difficulties in the adoption of MDE and about their
solutions – for example, it’s likely that we have different models used
with different roles (e.g. specification or analysis) and thus addressing
different problems. If we don’t assume a specific implementation ap-
proach, it’s difficult to see the obstacles that stand before us; on the
other hand, we incur a loss of generality in our discussion since we
don’t consider MDE as a whole and we might ignore some aspects,
but the conclusions we draw from the analysis of the approach can be
surely applied to MDE.

2.2 model driven architecture 13

!"#$%&'()

*+,-./+,/+$)

0&,/"

1'#+2%&'(#$-&+

!"#$%&'()

3./4-%-4)

0&,/"

*(."/(/+$#$-&+

,/$#-"2

1'#+2%&'(#$-&+

5&,/

Figure 2.7: In MDA the system is specified using a Platform Indipen-
dent Model (PIM), which abstracts away from implementa-
tion details. In order to obtain a system that can be turned
into a deployable executable, we have to transform the
PIM into a Platform Specific Model (PSM). This transfor-
mation requires guidance information on what implemen-
tation choices to make. A final stage of transformation is
required to turn the PSM into source code.

The particular MDE approach we have chosen is the Model Driven
Architecture (MDA) standard [10, 11], born in 2001 and endorsed by
the Object Management Group (OMG). MDA also inspired the re-
search inside ASSERT and CHESS. OMG noticed that software de-
velopers are struggling to implement over and over again their prod-
ucts against new emerging software platforms (like CORBA, Java and
.NET). While it’s unlikely that only one software platform emerges as
standard, they spend superfluous effort in coding the functionalities
of software not because they are changed but because they need to
be implemented differently per platform. Thus MDA proposes the use
of models and trasformations to effectively separate implementation
details from functionalities in the specification and production of soft-
ware, in order to allow easy change of technology (e.g. from .NET to
Java) while salvaging and reusing the durable information about what
software should do.

To this end, MDA advocates the following approach (figure 2.7):

1. we first construct a Platform Independent Model (PIM) that speci-
fies the solution in a way that does not depend on any particular
implementation (or platform in MDA terms). The PIM expresses
only the functionalities of the software and thus its validity will last
longer than traditional source code;

14 model driven engineering

2. we then transform the PIM into a Platform Specific Model (PSM), by
feeding the transformation with information about the chosen exe-
cution platform and its characterizing parameters. The PSM embod-
ies implementation details but it’s not the final system. We assume
that the PSM is automatically generated and users are not allowed
to directly modify it;

3. we perform a range of analyses on the PSM to validate its feasibility
and adequacy against a range of criteria. Some analyses are mean-
ingful only when we take into account the specific characteristics of
the chosen platform: for example schedulability analysis requires
to know the run-time overhead parameters of the real-time kernel
(time required for a context switch, time to execute an interrupt,
. . .). The PSM surely contains this information and is expressed in
a way that is more amenable to analysis than source code.;

4. when satisfied with the results of the analyses, we launch the final
stage of transformation from PSM to code to obtain the final system,
otherwise we return to the PIM.

For the sake of completeness, in MDA the PIM should be derived
(manually or automatically) from a model called Computation Inde-
pendent Model (CIM), which represents the application domain of in-
terest. We note that in [10] the discussion is focused on PIM and PSM,
while CIM has little coverage – this is coherent with the interest of
MDA in addressing technological variability.

In addition to methodology, MDA dictates the technologies to em-
ploy: in particular the languages used for both PIM and PSM should
be specified with Meta Object Facility (MOF), with the possibility to
use UML and the profile mechanism. When we refer to MDA, we will
not require the use of these technologies; nevertheless, MOF and UML
have the huge advantage of being standard and vendor-neutral and
thus they tend to be the first options to be considered in the realiza-
tion of an MDE approach.

Some people criticize MDA because it dictates a strict approach and
uses models mainly to address technological variability, with a very
little accent on application domains (for example [12] and [13]). In our
opinion, MDA is a good approach for our discussion; moreover some
aspects as the recognition of application domains can be easily fitted
in it, as we will show in the next section.

2.3 acknowledging scientific bodies of knowledge

Before we continue with the main content of this thesis, we would like
to make an important remark about the nature of application domains.

MDE recognizes that in order to raise substantially the level of ab-
straction of development the model should not talk about computa-
tion but about the problem, about the application domain. That is, we
should not use programming languages or general purpose languages,
but instead we should adopt DSL that model directly the domain of
interest.

At first glance it might seem that each application domain does not
overlap with the others, so that each domain has concepts and solu-
tions completely specific to it, without significant opportunity of reuse.
To counter this wrong impression, let us consider for example the con-
struction of software for automotive, railway and aerospace domains.

2.3 acknowledging scientific bodies of knowledge 15

!""#$%&'$()*

+(,&$)

-%$.)'$/$%*0(+1*(/*2)(3#.+4.

!""#$%&'$()*

+(,&$)

!""#$%&'$()*

+(,&$)
555

Figure 2.8: A scientific body of knowledge contains notions and con-
cepts that are transversally employed by several application
domains.

We are clearly considering three different application domains with dif-
ferent concerns – the functions needed in a car are clearly different for
those needed in a train or in a plane. Yet, these application domains
face common concerns, (for instance) in that parts of their software
must demonstrably meet temporal deadlines.

Hence application domains do share common transversal problems
with other domains. Nevertheless, we might think that these problems
can be resolved by each domain on its own – surely we have duplica-
tion of effort and solutions but the importance of application domains
in MDE might seem to justify this conduct. To an extreme degree, some
argue that different application domains in fact may need different so-
lutions [14]. We believe that the nature of such transversal problems
is such that their proper recognition and treatment require knowledge
that is more scientific than domain specific. This might sound irrele-
vant, but a scientific approach gives higher guarantees that the solution
will be sound, solid and cost effective.

Let us return to the example of automotive, railway and aerospace
domains. When we consider timeliness and predictability problems,
we ought to know that the real-time scientific community has long
known those problems and devised a range of analytic and engineer-
ing techniques to best cope with them. Such techniques may be re-
garded as best practices that form a so called scientific body of knowl-
edge. For example, in the real-time literature we can find many schedu-
lability analyses conceived for fixed priority systems, each of them
adding greater sophistication to the previous one. If we look at these
techniques, we can see that the knowledge required to construct them
is vast (actually there is also mathematics involved) and that exten-
sive community discussion is needed to assess their aptness. A sim-
ilar result cannot be obtained inside an application domain, because
practitioners and researchers have different job descriptions, different
background and different objectives.

Thus we firmly believe that the domain specific knowledge should
be complemented with adequate doses of scientific body of knowledge
(figure 2.8), otherwise we may adopt suboptimal solutions that dimin-
ish the value of the system.

To summarize, both application domain knowledge and scientific
bodies of knowledge are crucial to effective MDE and they should both
guide and steer the application development. In the MDA approach in

16 model driven engineering

!"#

$%&'()*%+&,-*'

!.#

"+/01+1',&,-*'

21,&-0(

31)1%1'415

&%46-,14,7%1

8//0-4&,-*'5

2*+&-'

.4-1',-)-45

9*2:5*)5

;'*<012=1

$%&'()*%+&,-*'

>*21

Figure 2.9: The way application domain knowledge and scientific
knowledge fit in MDA. PIM and its languages are influ-
enced by the application domain; PSM and its languages
are influenced by the scientific body of knowledge; the ap-
plication domain may impose a reference architecture; the
transformation from PIM to PSM is determined by both ap-
plication domain and scientific bodies of knowledge; analy-
ses of and code generation from the PSM are influenced by
the scientific body of knowledge.

particular, those two complements of knowledge have the role and
impact illustrated in figure 2.9:

• they determine how the DSL to use for PIM and PSM are defined.
At PIM level we must be able to conveniently express concepts
that pertain to the application domain. Conversely, at PSM level
we must be capable of constructing the system using methods
that have a scientific pedigree and background;

• the application domain often requires to deploy applications in
accord with some estabilished reference architecture, which may
be physical as well as logical;

• the transformation of the PIM to PSM is guided by both applica-
tion domain and scientific knowledge. The former retains design
choices favored by the user (or the domain culture), while the lat-
ter permits to implement them in a scientifically based manner;

• the allowable range of analyses to be performed on the PSM and
the practices of code generation from it must be rooted in the
scientific body of knowledge.

2.4 summary 17

2.4 summary

In this chapter we have introduced the fundamental notions that we
need to discuss in the next chapter the problems we encounter in in-
corporating MDE in the development process.

First we presented Model Driven Engineering itself as an attractive
approach to software engineering, which promises to be more effec-
tive than programming languages and coding in pursuing productiv-
ity and quality in the face of increasing richness of functionalities of
software systems. In this sense MDE advocates:

1) in place of source code and informal models, the use of models spec-
ifies with Domain Specific Languages (DSL), which describe soft-
ware systems in terms of application domains instead of in terms
of computation concepts;

2) in place of manual coding and manual translation of requirements,
the use of automated transformations that progressively generate
the final implementation from the models.

MDE does not dictate in which way models and transformations
should be employed. Nevertheless in order for us to be able to see the
problems in applying MDE we need to single out and discuss a specific,
concrete approach. To this end, we discussed Model Driven Architec-
ture, an MDE approach created and endorsed by OMG, which has a
strong accent on achieving independence from software platforms, so
that change of implementation can be done without ditching all the
implementation artifacts. MDA proposes to specify a system with a
Platform Independent Model (PIM) that abstracts from the particular
platform and contains only the specification of functionalities. Once
we choose the executing platform and its parameters, we can trans-
form the PIM into a Platform Specific Model (PSM), which contains
implementation details and permits the use of analyses to assess the
suitability of the design according to some criteria. If we are satisfied
with the resulting PSM, with another transformation we can obtain the
code, otherwise we return to the PIM to change it accordingly.

At the end of the chapter, we expanded on application domains.
While it’s acknowledged that each application domain has concerns
that require specific recognition and treatment, we argue that some
concerns are shared among domains and we can’t tolerate they are
tackled separately by each interested domain. Indeed the recognition
and treatment of these shared concerns require the support of scien-
tific method to find sound and cost-effective solutions: we need deep
knowledge to confront with them and we need extensive discussion to
assess the suitability of proposed solutions. So we contend that domain
specific knowledge should be complemented by scientific knowledge
in order to achieve the maximum benefit in MDE.

3A P P LY I N G M D E I N T H E R E A L W O R L D

The mere adoption of MDE alone is not sufficient to improve the qual-
ity of development of software systems. The basis of MDE may seem
detailed enough to realize an effective development environment – we
need only to define the languages and the transformations and we
are done. In fact the definition of languages and transformations are
fraught with difficulties that, if ignored or treated lightly, can diminish
the benefits brought by MDE or can raise the effort and the cost of
realization and maintenance of the development environment. In par-
ticular two problems stand before us in the attainment of this goal; in
the remainder of this chapter we want to elaborate on their essence,
background and trade offs:

1. DSL seem to be important vehicles for the expression of both the
application domain and the scientific bodies of knowledge. Given
the coverage that both elements have in the deployment of MDA,
DSL should serve for both PIM and PSM. The DSL should be care-
fully designed, for they determine the effectiveness at the user level,
the affordability of the implementation and the durability of the in-
frastructure. DSL can be defined through UML profiles or through
a metamodel specified with some metamodeling language (for ex-
ample MOF). Which way to go here is not clear, though. In section
3.1 we develop some reasoning about this particular problem;

2. as we have already noted, the application domain and the scien-
tific bodies of knowledge influence the entire spectrum of model
transformations (from PIM to PSM and from PSM to code). It is ob-
viously imperative that the transformations are proved correct for
some definition of correctness. As the proof of correctness may be
considerably onerous we are interested in taming its complexity to
the maximum possible extent. We must therefore understand what
factors most influence the relevant costs: in section 3.2 we single out
three such factors, which concern: (i) the number of views defined
on the PIM; (ii) the incremental construction of the PIM; and (iii) the
number of metamodels used to support views and models in both
PIM and PSM.

3.1 problem one : how to define dsl

DSL form an important foundation for MDE, because they permit to
express concepts rooted in application domains and in scientific bodies
of knowledge. Deciding how DSL are defined is a difficult design deci-
sion, which effects the very construction of MDE infrastructure. There
are two main ways to define a DSL:

1 to specialize the UML 2 metamodel through the definition of a UML
profile. In short, a profile is a particular kind of package that contains
elements called stereotypes, which can be attached to certain kind
of UML entities (e.g. classes) in order to extend their semantics (e.g.
this is a Java class). In this thesis we will consider UML 2.2;

19

20 applying mde in the real world

2 to create a new metamodel from scratch using MOF or other meta-
modeling languages.

A thorough comparison between UML profiles and metamodeling
can be found in [15], in which metamodeling is rated more powerful
but also less supported by tools than profiles. We think that the answer
is not so unequivocal and that there are other considerations that are
worth making:

• how UML profiles are defined in UML 2;

• whether, after the introduction of MDA, MOF is favored over
UML for defining DSL;

• in which way tools allow to create DSL.

Let us discuss these issues in isolation.

3.1.1 Definition of UML profiles

The way profiles are defined in UML 2 seems a little fuzzy to us. In
our opinion, this fuzziness stems from the following factors:

• profiles are described in both UML Infrastructure [16], which de-
scribes the foundation of the UML metamodel, and UML Super-
structure [17], which describes the rest of the UML metamodel.
The respective descriptions are almost the same (except for the
graphical notation added in Superstructure) and we see no value
in the duplication. Indeed, this way it’s not clear whether profiles
are part of the core of UML or not;

• the description of profiles is poor. To us the specification proved
very difficult to parse, in that it is written in a confused way and
it is not well structured;

• at first glance, profile have a visibility mechanism to target only
a subset of the UML metamodel, so to create a language that is
smaller than UML and thus more manageable. In particular to
this purpose the Profile metaclass has two associations: (i) meta-
modelReference, which permits to refer part of the UML meta-
model; and (ii) metaclassReference, which permits to specify di-
rectly metaclasses extended by the profile. In fact, it seems to us
that they don’t accomplish that goal:

– metamodelReference is limited to the compliance levels (sub-
sets of the UML metamodel) and the packages defined in
UML – we can still import unwanted metaclasses;

– metaclassReference seems to address the latter concern, but
its use can be quite laborious. Indeed if we want to leave out
a few metaclasses we have to use metaclassReference for
each of the remaining metaclasses, which can be numerous;

– last but not the least, the entire visibility mechanism seems a
futile exercise, since in the specification after its description
we find the following clause:

“The filtering rules defined at the profile level are,
in essence, merely a suggestion to modeling tools
on what to do when a profile is applied to a model.”

3.1 problem one : how to define dsl 21

In our opinion, this means that all the mechanism is op-
tional (for instance, we didn’t find any such mechanism in
Papyrus [18]) and in fact in the profile definition we are ref-
erencing the entire UML metamodel, which may well be an
unwelcome burden.

In summary, we contend that the current definition of UML profiles
has flaws that hamper their comprehension and their use.

3.1.2 MOF and UML

It is certainly worth investigating and clarifying the relationship be-
tween MOF and UML, in order to understand which is best at creating
DSL.

This might at first seem an easy question. Indeed, there has been a
time when UML and its profile mechanism were promoted as the sole
standard way to define DSL. When the MDA initiative proposed MOF
as the standard base to specify the metamodels for modeling software
systems, however, the opinions changed as some had reasons to prefer
MOF to UML for specifying DSL.

In fact the situation isn’t clear either way, unfortunately. To begin
with, MOF and UML were actually born together: both the Request
For Proposals (RFP) for MOF [19] and the one for UML [20] were
issued simultaneously in 1996, though in different contexts – MOF
for CORBA, UML for modeling. OMG soon acknowledged that UML
could be metamodeled with MOF and it was wise to use the same core
constructs for both languages. Indeed the RFP for UML 1 required to
furnish a mapping between MOF and UML constructs and the UML
1.1 proposal [21] has it.

The specifications of both MOF 2 [22] and UML 2 Infrastructure
[16] bring this integration to maturity. As required by their RFP ([23]
and [24] respectively), considerable effort has been devoted to develop
a core suitable for both languages, which contains (i) basic data types,
(ii) abstract concepts needed in the definition of metamodels and (iii) con-
crete constructs related to object oriented modeling. This approach has
at least two advantages according to [22]:

• it avoids the creation of yet another modeling language. UML is
widely known and moreover its base concepts are apt to model
modeling languages;

• it eases the creation of metamodeling tools through the adaption
of existing UML tools. In a broader sense, UML tools are already
capable of metamodeling because they already got the necessary
language core.

Put otherwise, MOF is a formal way to say that UML is capable of
metamodeling. MOF and UML are thus equally important: UML pro-
vides the modeling notation and MOF adds facilities useful for meta-
model management. In some sense, it can be seen as an incarnation of
the UML 2 proposal endorsed by the Distributed Systems Technology
Center [25].

22 applying mde in the real world

3.1.3 Tools for creating DSL

So far we have only considered methodological arguments, but it is
useful to also have a look at tools for creating DSL. In theory the
methodology should drive the technology: but it often happens that
tools favor some methodology and make more expensive others. Thus
we should look at what way the existing tools let us create DSL, to gage
which way they lean, whether for UML profiles or for metamodels.

We first searched for tools suited for creating DSL in the research
literature, on Model-Driven Development Tool Implementers Forum
home page (http://www.dsmforum.org/events/MDD-TIF07/) and on Jo-
han den Haan’s microblog on MDE (http://twitter.com/ModelDriven).
The tools we found include: Eclipse EMF [26]; MetaCase MetaEdit+
[27]; Vanderbilt University Generic Modeling Environment [28]; MOFLON
[29]; JetBrains Meta Programming Systems [30]; Microsoft DSL Tools
[31] and Microsoft “Oslo” [32]. All these tools use metamodeling in
order to specify new languages.

On the other hand, OMG has defined several DSL using profiles and
these DSL are supported by industry. For example, MARTE (Modeling
and Analysis of Real-Time and Embedded systems) [33] is a UML pro-
file for real-time and embedded systems and Systems Modeling Lan-
guage (SysML) [34] is a UML profile designed for systems engineering.
Both profiles are endorsed by several vendors and tools, for example
Artisan Studio by Artisan Software Tools [35] (support for MARTE is
only planned) and Papyrus [18].

In conclusion, both metamodeling and UML profiles feature a range
of supporting tools.

3.1.4 Additional considerations

At this point we would like to inject some additional observations:

• metamodeling gives the user complete freedom over modeling
concepts. Conversely, UML profiles only permit additions to the
UML metamodel (in the light of our previous criticisms);

• as noted in [15], one distinct drawback of metamodeling is that,
after the definition of the DSL, we should expend considerable
effort in the realization of companion tools, like graphical editors.
Conversely, UML profiles leverage on existing UML tools;

• we must consider the longevity of standards and tools. UML and
MOF are clearly well endorsed and this situation is likely to con-
tinue. On the other hand, metamodeling tools typically don’t use
MOF but employ non standard metametamodels, the longevity
of which is difficult to assess.

Despite all the arguments we have presented, it’s not clear whether
to choose UML profiles and metamodeling for the definition of DSL.

3.2 problem two : proving the correctness of transfor-
mations

The transformations from PIM to PSM and from PSM to code are ob-
viously central to the essence of our application of the MDE paradigm.

http://www.dsmforum.org/events/MDD-TIF07/
http://twitter.com/ModelDriven

3.2 problem two : proving the correctness of transformations 23

! "#$%&'()$*%+,)&

!--,+,)&%.//

0%$%*1+1$'

Figure 3.1: Visual depiction of our definition of correctness of transfor-
mation. The target model B should contain all the semantics
of the source model A and the additional semantics added
(usually as parameters of the transformation) should not
contradict the semantics established by A.

They turn the user model into a concrete implementation in accord
with choices and directives that reflect the application domain culture
and legacy as well as methods defined in the scientific body of knowl-
edge. We must therefore ensure that these trasformations are provably
correct.

We say that a transformation from a model A to a model B is correct
if (figure 3.1):

1. everything that holds in A holds also in B. In other words, the se-
mantics of B must contain the semantics of A;

2. things stated in B should not deny things stated in A. In other
words, the semantics we add to B should not contradict the seman-
tics contained in A. Note that the trasformation from PSM to code
must not add any semantics.

Carrying out such a proof of correctness is a costly endeavor: we
must therefore keep its complexity low and its chances of success high.
In this respect we wonder what factors impact it most. We focus our
attention on three specific factors, which we suspect to play a central
role:

• the necessity of specifying large and complex PIM using several
views (the word “view” will be introduced shortly);

• the use of incremental PIM construction, which produces multi-
ple intermediate PSM representations;

• the number of metamodels used in the development environ-
ment that underlie PIM views and intermediate PSM.

We discuss each of these factors in isolation below.

3.2.1 Creating PIM from concern specific views

Most real-world software systems are too complex to be specified with
a single PIM – creation, comprehension and evolution may become

24 applying mde in the real world

!"#

$%&'%()*)%+

,,,

$%+-./+0('.-)1)-02).3(

Figure 3.2: PIM does not necessarily consist of a single view, but it
may be composed of several concern specific views, each
of them represents a particular concern of the system – for
example functional units or deployment of tasks on pro-
cessors. When we compose the semantics of the views we
should obtain a single model representing the system un-
der study.

overwhelmingly difficult, because we cram too many things into it. We
should therefore rather describe it with several models. In this regard,
IEEE P42010/D6 [36] (descendant of IEEE 1471 [37]) advocates that
the description of the architecture of a system should be made up of a
series of views (figure 3.2), each of which conforms to a viewpoint that
establishes the concerns of interest (e.g. deployment or functionality)
and the ways to address them (e.g. languages and metamodels). This is
further acknowledged by SysML [34] that, with reference to IEEE 1471,
supports the concepts of views and viewpoints. Thus PIM should be
described by means of views. The more views we admit, the easier and
the more accurate the modeling of the overall system.

In order to ensure that the views form in effect a single and coherent
system, they should be:

• composable: their semantics should not superimpose, or if this
happens they should agree on the overlaps;

• compositional: there must exist a systematic way to assemble the
semantics of concern specific views to obtain the semantics of the
PIM as a whole.

In order to trigger the transformation from PIM to PSM, we should
prove that the views are composable, carefully minding any overlaps
in their semantics. The more views we have, however, the more proofs
of correctness we must produce in the PIM space and the more the ef-
fort we must expend, which adds to the cost of proving the correctness
of the transformation from PIM to PSM.

The cost of determining whether the views are composable in fact
depends on the way these views are constructed. There are two main
approaches to it, as described in [36]:

3.2 problem two : proving the correctness of transformations 25

• synthetic approach: each view is modeled separately with one or
more models and later composed with the others;

• projective approach: each view is extracted (without any transfor-
mation) from a unique underlying model that describes the en-
tire system. Conversely, changes to a view are propagated back
to the model.

In the former approach the demonstration of composability of the
views implies to show that models underlying them agree on their
semantic overlaps. The cost of this activity grows with the number of
models – which can be greater than the number of views – and the
number of different metamodels used to define them (more on this in
section 3.2.3).

Instead in the latter approach this demonstration is straightforward,
since views are derived from a single model and this model must be
free of contradictions for it to be considered valid. We have still to
ensure that views are correctly derived from the model and changes
to views are correctly applied to the model, but overall the effort is
smaller.

3.2.2 Incremental PIM construction

Up to this point we have tacitly assumed that we should have a com-
pletely specified PIM before we can instigate the transformation of it
into the PSM. This assumption sounds reasonable of course, but it car-
ries the implication that iterative feedback cycles – that we may need to
improve the goodness of fit of the PIM – can only be triggered on full
and complete models. This prerequisite however may be frustrating,
because the best use of feedback cycles is obtained when they begin as
early as meaningful analysis can be carried out.

We contend that it is desirable to allow generation of PSM from
an underspecified PIM, in order that we can obtain early feedback
and permit to refine, change or commit design decisions as early as
possible (figure 3.3). While the PIM may be underspecified, therefore,
it may still be sufficiently complete for some transformation to PSM to
take place for the specific purpose of some specialized analyses. Under
this assumption the construction of the PIM becomes incremental. This
requirement however has the following implications:

1) things we may leave unspecified in the PIM cannot be arbitrary, but
must be determined by the power of the underpinning theory of
analysis (which may do away with some detail information) and/or
by the analysis procedure (which may permit the use of user esti-
mates in the place of actual values). In other words, it is the PSM
and not the PIM to determine what we can omit from the PIM –
with this regard the PIM cannot abstract effectively from the PSM
and becomes dependent from the particular execution platform;

2) all the PIM increments can be seen as additions or changes to the
same model – although the semantics of these increments can dis-
agree because of the corrections made in response to analysis feed-
back. On the contrary, the increments of PSM cannot be seen the
same way but they should considered as distinct models, since they
are generated separately and are tailored for the analyses we run

26 applying mde in the real world

!"#

!$# %%%

&'()

%%%

*+,)

-+(./)&)/0

1.)*'2'),
34,)51.)*'2'),

Figure 3.3: PIM can be constructed incrementally in several iterations;
over time we may therefore have a string of underspecified
PIM. Under certain preconditions an underspecified PIM
may generate a PSM apt for some analyses. PSM derived
from underspecified PIM are throwaways and cannot be
thought of as increment of a single model – only the PSM
generated from completely specified PIM should be kept in
order to generate the code for the implementation.

on them. This means that every increment is specified with its own
metamodel, tailored for the specialized analyses made on top of
it. Moreover, except for the PSM corresponding to the completely
specified PIM, we can say that all the increments of PSM are “throw-
aways” – once we have executed analyses on them, they have no
further use;

3) the transformation from PIM to PSM becomes more complex – we
can in fact regard it as comprised of several transformations, the
one for the completely specified PIM (that allows code generation)
and the ones for each allowed degree of PIM completeness.

One important property these transformations should all have is
that, given a piece of PIM semantics, all the transformations that
address it map it to a piece of PSM that has the same semantics as
the one generated by the transformation that targets the completely
specified PIM. In other words, we must require that all transforma-
tions have a congruent behavior when they operate on the same
PIM semantics; if we did not enforce this, then for the various in-
crements of the same PIM we could generate PSM that in fact rep-
resent different systems, and the analysis results would in fact be
worthless.

To devise these transformations, it would be best to first define the
one that targets the completely specified PIM and next use this as
reference to construct the others.

3.2 problem two : proving the correctness of transformations 27

Hence, when we allow incremental PIM construction, the (compos-
ite) transformation from PIM to PSM becomes more difficult to prove
correct. In fact, to prove that the entire transformation is correct we
have to demonstrate that:

1) all the transformations are correct;

2) given a piece of PIM semantics, each transformation maps it to ele-
ments in the PSM that have the same semantics as the ones gener-
ated by the transformation that works on the completely specified
PIM;

3) the preconditions of the composite transformation are correct – that
is, we must ensure that for each allowed degree of PIM complete-
ness we trigger the right transformation and only for them.

3.2.3 Number of metamodels

We have seen that we may have to deal with a large number of models.
Having multiple models implies that we might use more than one
language for modeling them and thus we might deal with more than
one logical metamodel underneath them. In particular we can have
this extreme scenario:

• assuming we are employing the synthetic approach, every model
underlying the views in the PIM can have its own metamodel;

• while it is reasonable to assume that every PIM increment uses
the same metamodels, we cannot expect this for the generated
PSM. Indeed, since in each increment we may perform special-
ized analyses, we need to express different concerns, for which
we may need distinct metamodels.

We talk about logical metamodel to suggest that one and the same
(mega) physical metamodel may be constructed in a manner that per-
mits multiple logical metamodels to be realized as a specific tailored
view of it. For this reason in the following by metamodel we mean
logical metamodel.

We saw that the proof of correctness of trasformations requires to
handle models’ semantics, which is defined through the semantics of
their underlying metamodels. We maintain that the number of meta-
models to be supported may have a considerable impact on the cost
of the proof. If models are specified with different logical metamodels,
then before being able to compare their semantics we should perform
a semantic integration by establishing correspondences between their
metamodels’ semantics (e.g., this piece of information has the same
meaning as that piece of information there; or this relation here is
the inverse of that relation there). The cost of this integration seems
to grow super linearly with the number of metamodels: if we have
n metamodels we have to make a correspondence for each couple of
metamodels and then we have

(n
2

)
= O(n2) correspondences to make

(figure 3.4).
Conversely, if models are specified with the same logical metamodel,

then the semantics is defined the same way for all models and it is eas-
ier to check for overlaps and contradictions. Moreover, if every piece of

28 applying mde in the real world

!"#$%&'"()*

!"#$%&'"()+

!"#$%&'"(),

!!!

Figure 3.4: Proving the correctness of transformations requires to han-
dle the semantics of models, which in turn is established
thought the semantics of their metamodels. To be able to
compare the semantics of models, we should first estab-
lish correspondences between metamodels’ semantics, so
to know elements that have the same semantics. If we have
n metamodels we have to make a correspondence for each
couple of metamodels and then we have

(n
2

)
= O(n2) cor-

respondences to make.

syntax is attached to precise predefined semantics, the check becomes
syntactic.

In fact, UML actually defines a single logical metamodel with several
views defined on top of it (the diagrams).

3.3 summary

In this chapter we have discussed two problems that are to be faced
when we want to leverage application domains and scientific bodies of
knowledge in an MDE approach that aims to support the development
of correct-by-construction software systems. The problems we posed
were the following:

1. how to define modeling languages? Through UML profiles or else
through metamodeling? In discussing this question we singled out
some important elements:

• we criticized the way UML profiles are defined and highlighted
weak points that hamper the effective use of profiles;

• we noted that the gain of importance of MOF in the context of
MDA didn’t undermine the importance of UML as a vehicle
for defining languages, but rather recognized that UML is apt
for metamodeling;

• from an informal survey of tools for creating DSL we reported
the observation that both approaches seem to be equally sup-
ported.

Nevertheless, neither approach stands out clearly as the right choice.

3.3 summary 29

2. what factors impact most on the complexity of proving model trans-
formations correct? We conjectured that three such factors are:

• the number of views that make up the PIM. We argued that it may
be easier to construct the PIM out of multiple, simpler, concern
specific views; in that situation however we must show that the
views we use to form the PIM are composable, and the cost
of this proof is proportional to the number of views. We also
noted that it is desirable to have a single model underlying
these views;

• the incremental construction of PIM. We insisted that we should
enable the generation of PSM from underspecified PIM, in or-
der to facilitate specialized forms of analyses useful for insti-
gating (early) feedback cycles. This approach however incurs
a more costly proof of correctness. Indeed the transformation
becomes a composite one, for which we have to prove that

1) the transformations inside it are correct;

2) given the same piece of PIM semantics, all the transforma-
tions that may apply to it must behave the same way as the
one that targets the completely specified PIM;

3) each specific transformation is deployed solely when the
degree of underspecification of the PIM allows it.

• the number of metamodels used to specify the views of the PIM
and the various increments of the PSM. A proof of correctness
requires to deal with semantics; models’ semantics are estab-
lished through metamodels’ semantics. Each metamodel de-
fines its semantics in its own way; hence to search for semantic
overlaps and spot contradictions we have to make semantic
integration between each pair of metamodels. The more meta-
models we have, the higher the semantic integration effort.

The discussion of these problems involved only methodological and
scientific arguments – first of all we wanted to ensure a sound adoption
of MDE in the development process. But technological arguments are
equally important – if a solution requires too much effort to be imple-
mented and maintained, it’s likely to bring the entire environment to
its knees, regardless of its soundness. Therefore in the following chap-
ter we evaluate the feasibility of the approach devised for taming the
complexity of correctness proof of transformations using technologies
representative of both UML profiles and metamodeling: in this man-
ner we also expect to obtain more elements to decide how to define
DSL.

4T E C H N O L O G I C A L I N V E S T I G AT I O N

Mixed conclusions stem from the methodological discussion of the
previous chapter. We were able to find some factors that impact on
the complexity of proving the correctness of transformations, detailing
how to deal with them to render their influence minimal. In particu-
lar, we argued that we should employ as few metamodels as possible
and that views should be derived without any transformation from a
single underlying model. On the contrary, with regard to the defini-
tion of DSL, our reasoning highlighted an equivalence between UML
profiles and metamodeling, so it might seem we can choose whatever
approach we want.

We have already stated that the choice of the way DSL are defined
is a very important decision. Indeed almost all the development envi-
ronment depend on languages:

• a graphical editor is fit for a specific language, in particular it
furnishes a tailored graphical notation and facilities to ease the
manipulation of models;

• transformations operate on languages defined using a particular
metamodeling language;

• the way the language is defined impact on the serialization of
models and in particular on the ability to interchange models
with third-party tools without losing or corrupting information;

• the management of views is done accordingly to the specific se-
mantics of the language.

Thus we should avoid at all costs approaches to language defini-
tion that, although scientifically sound, require great or even herculean
effort to support adequately the methodology we devise. Indeed we
would risk to undermine the maintainability and longevity of the de-
velopment environment.

This consideration aids us in the decision between UML profiles
and metamodeling approach. Since we have already established part
of the methodology, to decide which approach to adopt we will con-
sider technologies representative of UML profiles and metamodeling
to evaluate whether, at which degree and at which cost they allow to:

1. define the metamodel. In particular we are interested in the specifi-
cation of constraints and in the construction of graphical editors;

2. support several views (in particular diagrams) that refer to a single
underlying model and are synchronized with it.

In the following sections we present the considered tools, we state
more precisely the requirements, we describe thoroughly how each
tool adheres to the requirements and at last we assign and discuss
synthetic ratings about the suitability of tools for the realization of the
development environment.

31

32 technological investigation

Tools

Metamodel Realization of
Approach definition graphical editors

Metamodeling EMF GMF

UML profiles MDT UML2

UML2Tools,
MDT Papyrus

Table 4.1: Approaches for DSL definition and tools that adhere to
them.

4.1 reviewed tools

The tools we evaluated are all part of Eclipse, in particular they belong
to the Modeling project [38]. All of these run on top of Eclipse 3.5
“Galileo” [39], released on June 24th 2009. A quick summary can be
found in table 4.1.

For the metamodeling approach we have chosen Eclipse Modeling
Framework (EMF) [26] and Graphical Modeling Framework (GMF)
[40]. EMF is a framework that allows the definition of metamodels and
the creation of models conforming to these; GMF is a framework for
the automated generation of graphical editors for EMF models. Both
technologies employ a model-driven approach to obtain the final code.
In particular, EMF requires an Ecore model that represents the meta-
model; GMF necessitates a series of models that specify the shapes, the
creation tools and the relationships between model elements, shapes
and tools (in addition to some implementation choices).

EMF and GMF are accompanied by a series of technologies used to
implement or complement them (figure 4.1):

• Graphical Editing Framework (GEF) [41]: a mature framework
for the construction of graphical editors according to the model-
view-controller pattern. It is the base of all graphical capabilities
of editors built with GMF;

• EMF.Edit: a subset of EMF that provides the so called editing
domains, a way to apply changes to EMF models in order to track
and undo/redo them;

• EMF Transaction [42]: refines editing domains with transaction
semantics, support for concurrent model manipulation and sig-
nalling of model changes. It is used by GMF editors to offer
robust manipulation of models in spite of concurrent external
changes;

• EMF Validation [43] and MDT OCL [44]: the former permits to
define constraints for a given metamodel and to evaluate them
against models, while the latter implements the Object Constraint
Language (OCL) [45] and thus allows the user to specify OCL
constraints. They are widely employed by GMF editors to en-
force contraints in response to changes to diagrams;

• JET [46]: a model to text transformation languages used to imple-
ment and customize model transformations employed by EMF;

4.1 reviewed tools 33

!"#
$%&'(')'*(+*&+,%)-,*.%/0+-/*(1+2')3+

4-0'5+%.')*60+-(.+0%6'-/'7-)'*(+0899*6)

!.')*6

:!;
<%(%6-)'*(+*&+)%=)+-6)'&-5)0+

&6*,+>"?+6%0*865%0

<!#
@%-/'7-)'*(+*&+16-93'5-/+%.')*60+

5*(&*6,'(1+)*+)3%+,*.%/AB'%2A

5*()6*//%6+9-))%6(

"$;+CD?
E,9/%,%()-)'*(+*&+)3%+

CD?+/-(18-1%

<"#
@%-/'7-)'*(+*&+16-93'5-/+

%.')*60+&*6+!"#+,*.%/0

!"#+F-/'.-)'*(
G9%5'&'5-)'*(+-(.+%(&*65%,%()+

&+5(0)6-'()0+*(+!"#+,*.%/0

!"#H!.')
I6*B'.%0+%.')'(1+.*,-'(0+)*+

)6-5J+-(.+8(.*+53-(1%0+*(+

!"#+,*.%/0

!"#+;6-(0-5)'*(
I6*B'.%0+)6-(0-5)'*(-/+%.')'(1+

.*,-'(0K+)3-)+-..+)6-(0-5)'*(-/+

0%,-()'50+)*+%.')'(1+.*,-'(0

>9-(.
;6-(0&*6,-)'*(+*&+!"#+

,*.%/0+'()*+)%=)+-6)'&-5)0

LF;C
"*.%/+)*+,*.%/+

)6-(0&*6,-)'*(

Figure 4.1: Technologies employed by EMF and GMF and relationships
of use between them. For the sake of clarity, in the shaded
rectangle we have grouped technologies that are used by
GMF and use EMF, so to draw only two arrows for them. In
section A.3 we detail the exact nature of these relationships.

• Xpand [47]: a model to text transformation languages used to
implement and customize model transformations employed by
GMF;

• QVTO [48]: a model to model transformation languages used to
implement and customize model transformations employed by
GMF.

For the profile approach we have chosen MDT UML2 [49] as the
implementation of the UML 2 metamodel. In particular, MDT UML2

is aligned with UML 2.2 and it’s realized with EMF. With regard to the
graphical part, we consider two tools:

34 technological investigation

!"#
$%&'(')'*(+*&+,%)-,*.%/0+-/*(1+2')3+

4-0'5+%.')*60+-(.+0%6'-/'7-)'*(+0899*6)

:"#
;%-/'7-)'*(+*&+16-93'5-/+

%.')*60+&*6+!"#+,*.%/0

"$<+=">?
@,9/%,%()-)'*(+*&+)3%+

=">+?+,%)-,*.%/

=">?<**/0
:"#+%.')*6+&*6+=">+

.'-16-,0

Figure 4.2: Technologies employed by UML2Tools and relationships of
use between them. EMF and GMF are used for both con-
struction and execution.

• UML2Tools [50], a series of GMF editors for some of the UML
diagrams, devised to be used as building blocks for UML envi-
ronments;

• MDT Papyrus [51], a modeling environment for the end user
with support for UML and SysML [34]. It is being developed
from developers of Topcased [52], MOSKitt [53] and Papyrus [18],
its direct predecessor developed inside CEA LIST. Let us note
that there is no clear naming for this last tool and the one under
review – they tend to be called both “Papyrus”. For the sake of
clarity in this document we stick to the names we have just used.

UML2Tools is still in incubation phase, that is it’s still developing
processes and communities required by Eclipse. Even so, UML2Tools
is used as a starting basis for editors in MOSKitt and TopCased.

Similarly, MDT Papyrus is a project that was accepted by Eclipse
on September/October 2008 and it is still under development, without
any public release. This means that (i) the program is still rough and
(ii) it must be built from sources to be used. We chose anyway to re-
view it since Papyrus, its direct parent, is stable but no more actively
developed and supported, and it will be irrational to consider this ver-
sion. According to [54] it seems that the first public version of MDT
Papyrus should be released after summer 2009, that the first stable re-
lease will ship with Eclipse 3.6 “Helios” expected for June 23rd 2010

and that there will be capabilities to import models built with the tools
it is meant to supersede.

UML2Tools and MDT Papyrus are implemented using EMF and
GMF (figure 4.2 and figure 4.3), so the metamodeling and the profile
approaches share the same technological basis. We wonder whether
EMF and GMF are powerful enough to render viable the metamod-
elling approach or whether the value added by MDT UML2, UML2Tools

4.2 requirements 35

!"#
$%&'(')'*(+*&+,%)-,*.%/0+-/*(1+2')3+

4-0'5+%.')*60+-(.+0%6'-/'7-)'*(+0899*6)

:"#
;%-/'7-)'*(+*&+16-93'5-/+

%.')*60+&*6+!"#+,*.%/0

"$<+=">?
@,9/%,%()-)'*(+*&+)3%+

=">+?+,%)-,*.%/

"$<+A-9B680
=">+%(C'6*(,%()+2')3+

DB0">+0899*6)

!!#
:6-93'5-/+%.')'(1+

5*()6*/0+&*6+!"#+

,*.%/0

Figure 4.3: Technologies employed by MDT Papyrus and relationships
of use between them. EMF and GMF are used for both con-
struction and execution.

and MDT Papyrus can make a difference. For the sake of completeness,
let us notice that MDT Papyrus uses also Extended Editing Framework
(EEF) [55], which furnishes sophisticated UI elements for editing of
EMF models.

We assume that the reader is familiar with the concepts related to
plugin development in Eclipse. For further details we refer to [56].
Moreover, we assume the reader is also familiar with GMF: by the
way in appendix A we offer a small compendium.

4.2 requirements

Now we state more precisely the requirements that technologies under
examination should satisfy in order to be suitable for our needs. For
the sake of clarity, we divide the requirements into three categories:
those related to DSL definition, those related to view management and
those that quantify the required effort.

4.2.1 DSL definition

A1. the definition of the metamodel should be rich of options and
capabilities.

Rationale For example, some desirable options are rapid prototyp-
ing, reuse of existing metamodels and external extensions of an
existing metamodel without being forced to redefine it.

A2. it should be possibile to specify a (rich) graphical concrete syntax
for the metamodel.

A3. it should be possible to specify constraints that establish whether
a given model is valid.

A4. it should be possibile to validate a model while it is being edited.

36 technological investigation

4.2.2 View management

B1. a model can have several views (in particular diagrams) defined
on it.

B2. views should be kept synchronized with the underlying model ac-
cording to some policies that conform to their viewpoints. This
synchronization should be done during editing and not only dur-
ing saving.

Rationale Let us consider a model with two views, a class diagram
and a component diagram (in the UML sense). Both account for in-
terfaces. It might seem sufficient to show and synchronize them in
both views. Instead it may be better that the component diagram
shows and synchronizes only the interfaces used by ports, in order
that it contains less clutter.

B3. in a view we should be able to refer an element of the underlying
model that was originally created in another view.

Rationale With regard to the previous example, newly created in-
terfaces in the class diagram do not show up in the component
diagram. These interfaces can be used by ports only if we permit
to reference an existing interface from the component diagram.

4.2.3 Effort spent on tool construction

C1. it should be possible to build DSL and graphical editors with a
reasonable effort.

C2. it should be possibile to adapt generated artifacts in a way that
doesn’t require to ditch automatic generation of code.

C3. custom changes to languages and editors should require little
knowledge of underlying technologies.

4.3 emf and gmf

4.3.1 DSL definition

Requirement A1

Using EMF, the metamodel (which in this context indicates only the
abstract syntax) is defined using Ecore, a metamodeling language de-
rived from the MOF language. Simply put, Ecore corresponds to the
class diagram of UML and it is easy to grasp and use. The metamodel
can be specified using the tree editor (figure 4.4), the graphical edi-
tor developed inside Ecore Tools [57] (figure 4.5) or the textual syntax
provided by EMFatic [58] (figure 4.6).

The code isn’t directly generated from the specified metamodel. In-
stead we should first generate an EMF generator model (genmodel
for short, figure 4.7), which decorates the EMF model with additional
options about how the code should be generated – for example we
could specify different names for the packages or force the compati-
bility with a given version of Java. Other options will be illustrated
throughout this chapter. Once we finished customizing the genmodel,

4.3 emf and gmf 37

Figure 4.4: The tree editor used to manipulate EMF models.

we can trigger the transformation to code, obtaining a plugin for ma-
nipulating from code models conforming to the metamodel and other
plugins that provides a basic tree editor (like the one used for Ecore
models).

EMF provides some advanced capabilities in the definition of meta-
models that are worth mentioning:

• it is possible to reuse elements from an existing metamodel in
the definition of a new one – thus we are not forced to start from
scratch every time. During the definition of the new metamodel
and its associated genmodel we need to reference entirely the
existing metamodel, but during the manipulation of models (e.g
in the tree editor) we are allowed to create only elements of the
reused types;

• EMF allows us to define derived metaclasses for a base meta-
model in a new distinct metamodel and to use them in models
conforming to the base metamodel [59]. This way we can easily
extend existing metamodels for specific purposes, without the
need to alter the original definitions. To enable this behaviour, in

38 technological investigation

Figure 4.5: The graphical editor contained in Ecore Tools for the ma-
nipulation of Ecore models.

Figure 4.6: An Ecore model specified using the textual syntax provided
by EMFatic.

4.3 emf and gmf 39

Figure 4.7: A glimpse of a EMF generator model through its tree editor.
The tree is the same of figure 4.4, but in the lower part we
see properties related to code generation.

the genmodel of the base metamodel we should specify that it al-
lows the creation of new kind of entities (by setting the property
“Extensible Provider Factory” to “true”) and in the genmodel
of the new metamodel we should say that metaclasses could be
instantiated in a model conforming to the base metamodel (by
setting the property “Child Creation Extenders” to “true”). We
will refer to this mechanism as child creation extenders.

Requirement A2

The specification of the graphical syntax for an EMF metamodel is
done through GMF, in particular using the graphical definition model
and the mapping model. The former permits to describe:

• the shapes (for example rectangles, ellipses, even SVG figures
and custom polygons);

• the containment boxes, which permit to nest shapes inside other
shapes (like packages in UML). In particular, we can specify lay-
out policies (for example all shapes contained in a box are auto-
matically positioned in a stack-like manner);

40 technological investigation

• the nodes and connections, which have a specific shape. Nodes
can also have containment boxes.

Let us remark that we are given lots of options for the construction
of the graphical syntax.

The latter model associates nodes and connections defined in the
graphical definition model with the elements of the metamodels. This
way the graphical definition model can be reused for other metamod-
els.

The specification of these models can be quite tedious, especially
with dense metamodels with several elements. To some relief, GMF
provides some wizards to create initial skeletons of these models.

Requirement A3

Although EMF has basic support on validation, we only considered
EMF Validation, which is more capable. As the name implies, EMF
Validation permits to validate models according to some constraints.
Constraints are not specified within the metamodels, but through an
extension point provided by EMF Validation. This contributes to flexi-
bility – for example, we can add additional constraints through a new
plugin, without touching existing plugins. Out of the box EMF Valida-
tion provides two kind of constraints:

• Java constraints, that is classes that contain Java code that through
model navigation runs checks on the adequacy of the model. In
the extension point we should refer to these classes;

• OCL constraints. These leverages the implementation furnished
by MDT OCL. OCL constraints are directly specified in the ex-
tension point, and we find this choice a little awkward for two
reasons:

a. constraints should be inserted in the extension point inside a
CDATA section (let us recall that extension points are speci-
fied in a XML file called plugin.xml and CDATA sections are
used to insert data that could be recognized as XML markup).
This impedes to modify them using the graphical editor for
the extension points and forces the user to manually edit the
plugin.xml file;

b. in our opinion, constraints – that is domain-specific knowl-
edge – shouldn’t be buried in extension points, that instead
contain implementation details on how plugins cooperate –
that is computation knowledge. Constraints could be better
supplied in external files.

EMF Validation permits to use other languages for the constraints by
specifying appropriate language parsers in an appropriate extension
point. Moreover, it’s possible to retrieve constraints from other sources
(for example models or external files) by implementing classes called
constraint providers and indicating them in an extension point – thus
addressing in part our criticisms to specification of OCL constraints.

GMF has some additional facilities to ease the use of EMF Validation.
In particular it allows to specify constraints directly in the mapping
model, hiding the details on how they should be supplied to EMF
Validation.

4.3 emf and gmf 41

Figure 4.8: An EMF models with two associated diagrams that in fact
are views. The top diagrams contains all elements of type
Interface, while the bottom diagrams contains the elements
of type Component and one element of type Interface.

Requirement A4

EMF Validation provides two types of validation: batch validation done
on the entire model and live validation in response to model changes.
Within graphical editors generated with GMF live validation is called
on user changes and batch validation can be invoked through a menu
entry.

4.3.2 View management

Requirement B1

GMF does not have an intrinsic notion of views: a graphical editor for
a given metamodel is meant to manage a single diagram. However,
GMF does not prevent us from defining several editors that target the
same metamodel – so each diagram is in fact a view. This is further
corroborated by the possibility of creating a new diagram from an
existing model, without being forced to create a new dedicated model.
To the same model we can then associated several diagrams and thus
several views (figure 4.8).

Each diagram is defined in its own file, distinct from the one of the
model. If we have too many views, we end up with a lot of files: we
found no options or quick recipe to collapse the views into a single
file.

For the sake of completeness, we notice that all this discussion does
not hold if in the generator model we set the property “Same file for
model and diagram” to “true”. This way the generated editor will
embed the model in the diagram file, and thus we cannot have views.

42 technological investigation

Requirement B2

When we create different diagrams for the same model, their GMF
editors correctly update them if the underlying model changes. Never-
theless, this logic has two drawbacks:

1. if we make a change in a diagram, the change is sensed by other
diagrams only when we save it;

2. we can only choose to synchronize all elements handled by dia-
grams or to not synchronize at all, without any intermediate op-
tions.

With regard to the former problem, it is possible to obtain the de-
sired behavior with additional code and changes to the trasformation
from generator model to code. Per se the change is not so complex. We
already mentioned that GMF graphical editors employ transactional
editing domains to manipulate the model. Since every editor has its
own editing domain, changes are signalled by the editing domain only
to the editor itself and others become aware of them only when we
save the model (figure 4.9). To solve this we need share the editing do-
main among the editors that access the same model (figure 4.10) – EMF
Transaction helps in this endeavour. Unfortunately, this scenario is not
supported by GMF Tooling; although we can opt to manual change of
code, it is better to modify the transformation and this requires some
effort. For the implementation details we refer the reader to [60]. In this
document we’d like to point out some consequences of this solution:

• when we modify a diagram of a model, all editors that are open
on that model become dirty (i.e. they signal their contents are
not saved to disk). Moreover, undo/redo stack is shared among
editors, since they share the editing domain;

• editors cannot sense changes made to the model with other tools
– this is due to the interaction of editing domains with the compo-
nent that senses changes to the model file. This is not a big prob-
lem, since in our intent the user is supposed to use the graphical
editors to edit the model.

With regard to the latter problem related to the synchronization pol-
icy, this can be solved by coding and plugging into editors an appro-
priate policy, leveraging GEF and GMF infrastructure. We dwell on
the implementation of this policy, that requires appendix A to be fully
understood.

In GMF, when we issue a request to create or manipulate a graphi-
cal element (which represents an element of the domain), we ask the
interested edit part what commands should be executed on both the
semantic and notational model (that is, the diagram). This is the right
place to check whether the notational model is synchronized with the
semantic one and thus generate commands that restore the alignment
between the two models. In particular, the edit policy responsible for
issuing these commands is referred as the canonical edit policy and it’s
generated automatically by GMF. All we have to do is replace this pol-
icy with a different one: we can change directly the code of the edit
policy or we can create a new edit policy and, through the use of the
dedicated extension point, add it to the edit part while disabling the
unneeded one. The canonical edit policy is needed by every shape that

4.3 emf and gmf 43

!"#$%&'(!"#$%&')

*#+,'

-%.$/#.#.0'

!1*'2%",+

!"#$#.0'"%2/#.'(

3.'2,2%&4'

2%",+'(

56,6 56,6

+%/"6+%/"6

!"#$#.0'"%2/#.')

3.'2,2%&4'

2%",+')

Figure 4.9: Graphical editors generated with GMF
has their own editing domains. If two
editors open the same model file, in fact
the model will be loaded in memory
twice. Changes to models done through
editors are made on the respective edit-
ing domain and thus are not sensed by
the other domain.

!"#$%&'(!"#$%&')

*#+,'

-%.$/#.#.0'

!1*'2%",+

34,4 34,4

+%/"4

!"#$#.0'"%2/#.

5.'2,2%&6'

2%",+

Figure 4.10: The solution proposed in [60] lets the
graphical editors share the editing do-
main when they open the same model
file. This way changes made in one ed-
itor are sensed by the others.

can contain other shapes – like the entire diagram or the part of the
class figure that shows operations and attributes.

We note that the synchronization policy relies heavily on the way
references to elements of the semantic model, needed in the notational
model, are constructed. EMF models are serialized in XML or XMI
format, and references to elements use a syntax similar to the one of
XPath. We should avoid fragment paths that rely on element position
inside its containers, which can be fooled by element reordering or el-
ement deletion followed by element insertion. Instead we should use
fragment path that relies on keys inside a given container, intrinsic
ID (an attribute declared by users as key for all the elements of that
kind in a model) or extrinsic ID (an additional key added to all ele-
ments, assigned automatically by EMF and guaranteed to be unique).
In particular, we tried out extrinsic ID and we verified that, thanks to
the use of UUID to identify elements, this approach is immune to the
problems mentioned above.

In conclusion, with with the help of some extra ad-hoc code, this
requirement is fulfilled by EMF and GMF.

Requirement B3

To insert a notational element for an already existing semantic element,
we have two ways:

• using shortcuts, a mechanism provided by GMF to insert refer-
ences to elements in current and external models (even with dif-
ferent metamodels), through selection dialogs and drag and drop
from outlines of the models (which can be found in the Project
Explorer view). The mechanism works quite well, although (i) we

44 technological investigation

incurred some hiccups with selection dialogs and (ii) documen-
tation and tutorials omit to mention a fundamental step for the
generation of this feature (the only clue we found to it was [61]);

• programming a command (for example a menu item) that adds
a notational element for an existing semantic element. We note
that there is some infrastructure to do this but:

1. it is not well documented. Even looking directly at the source
code of GMF it’s difficult to understand how to employ the
infrastructure, since it is mainly used by creation tools in the
palette to generate both notational and semantics elements;

2. it is a bit rough and not complete. Perhaps it is scheduled for
completion in a future release or it is regarded as not impor-
tant.

4.3.3 Effort spent on tool construction

Requirement C1

The construction of metamodel with EMF is cheap – the entire tool
chain is robust, easy to use and with good documentation, although
we had some difficulties in finding material for advanced topics like
resources, child creation extenders and extrinsic ID. Instead building
the graphical editor requires considerable effort for several reasons:

• the architecture of GMF is wide and complex, in particular the
Runtime part. This complexity stems from the need for extensibil-
ity and the nature of the tasks the graphical environment should
carry out (graphical editing of figures, management of contain-
ment boxes, model manipulation, model validation, definition of
notational elements, . . .);

• the lack of properly organized documentation, which makes it
even more difficult to understand the architecture. The help sys-
tem contains only outdated articles about the Runtime part, which
don’t take into account the relationship with the Tooling part.
The wiki has several articles and collection of FAQ, but they
tend to be outdated, not structured and unclear. There are sev-
eral presentations from the various editions of EclipseCon con-
ferences (http://www.eclipsecon.org), but they tend to have
the same material. The newsgroup has a wealth of information,
but it’s difficult to find if we don’t use the right search key-
words. Moreover, as of August 20th 2009 web access to news-
group is clumsy, although we should note that a more robust
system is being developed (http://www.eclipse.org/forums/).
Some useful information is even buried in the Bugzilla system
(https://bugs.eclipse.org/bugs/).

The lack of documentation for both EMF and GMF forced us to
consult the implementations of GMF, MDT UML2 and UML2Tools to
understand how to use some capabilities.

Requirement C2

EMF supports direct editing of the generated model code: if the code
generator finds a class or a method without any @generated javadoc tag

http://www.eclipsecon.org
http://www.eclipse.org/forums/
https://bugs.eclipse.org/bugs/

4.4 uml2tools 45

or with the @generated NOT javadoc tag, it does not remove or substi-
tute it, preserving custom changes. With regard to methods, EMF can
exhibit a sophisticated behaviour: indeed we can customize a method
generated by EMF (using the above-mentioned manner) and at the
same time ask EMF to generate the original method with a different
name, in order to be able to use it in the customized one. Moreover,
EMF offers the possibility to modify the trasformation from genmodel
to code by indicating a folder with JET templates for the new transfor-
mation.

GMF does not accomodate well the direct change of generated code.
Instead we have two way to customize graphical editors:

1. the first way to influence the graphical editor is to use the extension
points furnished by the Runtime part, which target specific mecha-
nisms. Through extension points we can for example alter the edit
policies for specific edit parts or add supplementary notational ele-
ments. The use of the extension points hides in part the complexity
of GMF and of the generated code. We have also the advantage
that additions can be factored in separate plugins, achieving great
flexibility;

2. for aspects extension points don’t cover, we can customize the trans-
formations from mapping model to generator model and from gen-
erator model to code in order to obtain custom implementations. In
particular, the latter transformation can be customized in an aspect
oriented way, without the need to specify the entire transformation,
and the generator model can be extended to allow the specification
of additional parameters.

Requirement C3

While EMF is rather self-contained, GMF employs several technologies:
GEF for the graphical part, EMF Transaction for model changes and
notification, EMF Validation for constraint check, Xpand and QVTO
for the implementation of transformations. This means that in order to
master the creation of graphical editors the user should get acquainted
with the concepts of all these technologies (in particular GEF), in ad-
dition to the effort already required to understand GMF itself. This
means that we must spend a lot of time only to study properly the
technologies and in this period we get little results. By the way, once
the user understands the framework and how to gather documentation
about it, we believe it becomes quite easy to generate and customize
the editor, although the effort is still quite high.

4.4 uml2tools

4.4.1 DSL definition

Requirement A1

MDT UML2 offers two ways to define UML profiles, which differ in
effort and capabilities:

• dynamic definition: we model the profile, next we create an Ecore
representation (operation named as definition) to be able to ap-
ply it to UML models. This representation is embedded into the

46 technological investigation

profile itself. The profile can be registered in an extension point
in order to ease its retrieval within UML tools – this avoids the
user to manually search for and load the desired profile. This
approach has the advantage of being extremely quick while we
lose some control (more on that later).

• static definition: the workflow becomes similar to the one for EMF.
First we define the profile, we decorate it with stereotypes that
guide code generation, we derive a genmodel, we change its
options and at last we generate the code for the profile. Code
generation within UML 2 seems a little bit more powerful than
Ecore code generation: the generation of the genmodel can be in-
fluenced with several parameters and in the genmodel we have
additional options. As for dynamic profiles, static profiles can
be registered in a dedicated extension point so UML editors can
retrieve them easily.

While it is quite laborious with regard to dynamic definition,
static definition has several good points:

– it’s easier to manipulate stereotypes from code. In particular,
stereotypes are mapped as proper EClasses (the equivalent
of UML classes in Ecore) thus the retrieval and modification
of their properties are very easy. Meanwhile, in the dynamic
definition we have no such EClasses and to modify a given
property we are forced to use methods of UML elements
that require us to specify its name and the stereotype it be-
longs to;

– we can have more control on versioning. Indeed in dynamic
definition every change in profile causes the creation of a
new Ecore metamodel, while with static definition we have
more control on whether to update a given profile or create
a new one;

– we can provide code for operations and derived properties.
This is just not possible with dynamic definition.

Static profiles seem to be the preferred approach for defining profiles
in MDT UML2. Nevertheless, there some hiccups to be aware of:

• we have noticed that playing naively with the available options
can lead to not functioning profiles. For instance, we followed the
tutorial contained in the update site [62] (associated with [63])
and we weren’t able to compile the generated code. We searched
the newsgroup and discovered [64] that this was caused by a
misconfigured option in the wizard for the generation of the gen-
model, that lead to the generation of invalid code (to be precise,
the option “Camel Case Name” was not set to “Ignore”);

• in theory, if we need to regenerate the genmodel with different
options, the transformation should take into account an already
existing genmodel in order to preserve user-defined parameters.
In fact, we have experienced that this mechanism is ineffective,
since it maintains the old settings regardless of the new ones.
Thus we are forced to delete the old genmodel, to regenerate it
from scratch and to specify again custom settings.

4.4 uml2tools 47

MDT UML2 includes some welcome facilities like the package merge
mechanism and supports child creation extenders to create, instead of
stereotypes, new metaclasses in the UML metamodel.

To be precise, so far we have talked about mechanisms offered by
MDT UML2 through its tree editor. This editor is functional but is not
apt for production-oriented use. UML2Tools has a graphical profile
editor that permits to define visually stereotypes, but it does not allow
the definition of the profile as described before, forcing the user to use
the tree editor.

Requirement A2

UML2Tools furnishes graphical editors for UML for class, deployment,
composite, component, state machine and activity diagrams. There is
also an editor for sequence diagrams, but it is not fully functional; the
editor for timing diagrams is present in CVS but not advertised. There
is no editor for communication diagrams.

The graphical editors permit to apply profiles and stereotypes to
packages and elements respectively, with support for the display of
custom icons for stereotypes – although we weren’t able to show icons
for stereotypes contained in the MARTE beta 2 profile shipped with
Papyrus. We noticed that sometimes this mechanism doesn’t work
– we experienced this with some models that used the above men-
tioned MARTE profile. In this regard, the tree editor shipped with
MDT UML2 is more robust in profile and stereotype application – but
obviously it does not support the visualization of custom icons.

Requirement A3

OCL constraints can be specified directly in the profile and, if we opt
for static profile definition, they can be automatically enforced in gen-
erated code. Obviously, this leverages MDT OCL. Constraint specifica-
tion can be done through both tree editor and graphical editor.

Requirement A4

Live validation can be applied also to UML profiles, given that UML
is metamodeled using Ecore and thus we can use EMF Validation. It is
worth noting that, according to [65], the application of a stereotype to
an element is not fired as a change to the element to which is applied
but as a change of the model, requiring some extra logic to relate this
change to the element.

4.4.2 View management

Requirement B1

Since UML2Tools is generated using GMF, we can create several dia-
grams that refer to the same UML model. All the discussion made for
EMF and GMF can be repeated here.

Requirement B2

Within the Galileo release train the synchronization mechanism for
the notational and semantic model has been refined in order to let the

48 technological investigation

Figure 4.11: Dialog with synchronization settings shown during the
creation of an UML class diagram in UML2Tools. Selected
element are inserted in the diagram; content of the bold
package will be automatically synchronized, while the
plain package will not.

user decide which elements to show on the diagram and which con-
tainers should have automatic synchronization (figure 4.11). However,
synchronization seems not to work with properties and attributes in
classes.

Unfortunately, UML2Tools diagrams that use the same UML model
are not synchronized during editing but only during saving.

Requirement B3

We can use the synchronization mechanism to select which entities
to show in a diagram or in alternative we can opt for the shortcut
mechanism.

4.4.3 Effort spent on tool construction

Requirement C1

The definition of profiles requires an effort that is the same or less that
the effort required in EMF. In addition we already have quite capable
graphical editors with full support for profiles, ready to be customized.

Requirement C2

We can take the code of UML2Tools and customize it using the tech-
niques explained for EMF and GMF: thus we can customize them with-
out ditching code generation.

4.5 mdt papyrus 49

Requirement C3

UML2Tools is realized with GMF and thereby its customization re-
quires to have a good knowledge of GMF and related technologies,
and we have already discussed the needed effort. We were expecting
to have a simpler mechanism to customize and adapt UML2Tools than
the ones supplied by GMF: we soon realized that such mechanism is
useless, since GMF is already apt for these changes and further abstrac-
tion is not required.

4.5 mdt papyrus

4.5.1 DSL definition

Requirement A1

Since MDT Papyrus is based on MDT UML2, all the things stated
about mechanisms for profile definition hold here. We have only to
see how the tool supports profiles.

As of August 20th 2009, MDT Papyrus is not able to create profiles
but it is able to apply them to models. We observe that great care
is put on the stereotype application mechanism, as [66] testifies. A
minor hiccup we found is that the profiles registered in the extension
points of MDT UML2 are not detected in MDT Papyrus; instead, the
tool consults another proprietary extension point. In our opinion this
behavior has little sense. Anyway, similarly to what happens in the
tree editor of MDT UML2 and in UML2Tools, we can point to a profile
defined in a project of the workspace.

Requirement A2

As of August 20th 2009, MDT Papyrus has not implemented all the
UML diagrams. The effort of the development is concentrated on the
class diagram, although we can also find rough versions of sequence,
use case, activity and state machine diagrams.

We already said that profiles and stereotypes can be applied, at least
in class diagrams. Custom icons for stereotypes should be supported:
we found options to control the graphical depiction of stereotypes
(textual, graphical, both or shape), but actually only the textual form
works.

Requirements A3 and A4

We already said that MDT UML2 supports constraint specification and
enforcement. With regard to MDT Papyrus, it is difficult to establish to
which degree it will support constraint specification and enforcement
in profiles.

4.5.2 View management

Requirement B1

Also with this tool a single UML model can have several diagrams
defined on it. While with GMF and UML2Tools each diagrams has
its own file, in MDT Papyrus all diagrams are grouped in a single file.

50 technological investigation

This way a model has only one diagram file, resulting in less file clutter
in the project.

Requirements B2 and B3

The requirements about view synchronization and references to model
elements cannot be verified because as of August 20th 2009 develop-
ment is focused on each single diagram (in particular the class dia-
gram). To have an idea of the capabilities of the final version, we briefly
examined MOSKitt 1.0.0 RC1 and Topcased 2.5 and we found interest-
ing features we hope will be ported to MDT Papyrus, in particular:
(i) we can drop elements from the outline of model (shown in the
Project Explorer) into the diagrams; (ii) sequence diagrams correctly
recognizes and proposes classifiers on class diagram as types for life-
lines; and (iii) views are kept synchronized with the model during edit-
ing (although not completely, for example properties and operations
of classes are not kept synchronized).

We believe these features and complete support for view synchro-
nization will be present in the final version of MDT Papyrus.

4.5.3 Effort spent on tool construction

Requirements C1, C2 and C3

We can repeat the same considerations shown for UML2Tools, given
that also MDT Papyrus is based on EMF and GMF. We note that with
regard to UML2Tools MDT Papyrus is overall better refined and with
more features, despite it is still under development. As an extreme
example, the editor of sequence diagrams furnished with UML2Tools
is not fully functional, while the one in MDT Papyrus is quite usable.

4.6 evaluation

From the considerations we have made so far we want to derive a
series of synthetic ratings that enable us to discern which is the most
promising technology.

4.6.1 Assessment of requirement satisfaction

For each requirement we assign an integer score in the range [0, . . . , 9],
where 0 (zero) means that the requirement is not satisfied, 5 that the
requirements is barely satisfied and 9 that the requirement is satisfied
fully. The scores for the reviewed tools are reported in table 4.2.

4.6.2 Obtaining synthetic rating

For each technology we want to obtain a single mark that indicates
its adequacy for the realization of our development environment. The
idea to get this mark is to first establish the importance of require-
ments assigning a weight to each (expressed in percentage) and next
to calculate the rating using a weighted average of requirement scores.
For the sake of simplicity, we also assign weights to categories, so that
weights of requirements are in fact relative to their category. Thus the
rating of a tool is calculated as weighted average of category scores,

4.6 evaluation 51

MDT Papyrus

Requirement EMF/GMF UML2Tools Current Potential

A1 8 8 5 8

A2 7 8 5 8

A3 6 7 6 8

A4 7 7 6 8

B1 6 6 7 7

B2 6 8 2 8

B3 5 7 2 7

C1 5 7 7 7

C2 8 8 8 8

C3 2 3 3 3

Table 4.2: Table with characteristics of analyzed tools. Scores are be-
tween 0 and 9.

that in turn are obtained as weighted averages of requirement scores.
We finally order the analyzed technology according to the previously
computed ratings.

One might argue that the final ratings might be severely affected by
the weights assigned to the requirements and the categories. Thus we
want to apply different weight assignments in order to compare how
they affect the ranking of technologies. We have devised four assign-
ments:

• W1 in table 4.3. Every category has the same weight and within
each category requirements have the same weight. Put another
way, every requirement has the same importance, leading to a
reference assignment;

• W2 in table 4.4. We assigned weights to categories in order to
reflect their importance, while the requirements within a cate-
gory have the same weight. In particular, we regarded as more
important the second and third category;

• W3 in table 4.5. Every category has the same weight but within
each category requirements have different weights reflecting their
importance. In particular, in the first category we assigned a low
weight to A4 and a high weight to A2, in the second category
we raised the weights of B2 and B3, in the third category we
increased the weights of C2 and C3;

• W4 in table 4.6. In this assignment we combine the category
weights of W2 with the requirement weights of W3.

4.6.3 Final ratings

In table 4.7 and graphically in figure 4.12 we have reported the rat-
ings obtained by EMF/GMF, UML2Tools and MDT Papyrus for each
weight assignments. With regard to MDT Papyrus, we also inserted the
ratings that we reckon it will achieve when it will exit the development
phase.

52 technological investigation

Weight Category
Requirement within category weight

A1 25%

33%
A2 25%
A3 25%
A4 25%

B1 33%
34%B2 34%

B3 33%

C1 33%
33%C2 34%

C3 33%

Table 4.3: W1 weights.

Weight Category
Requirement within category weight

A1 25%

20%
A2 25%
A3 25%
A4 25%

B1 33%
40%B2 34%

B3 33%

C1 33%
40%C2 34%

C3 33%

Table 4.4: W2 weights.

Weight Category
Requirement within category weight

A1 25%

33%
A2 40%
A3 25%
A4 10%

B1 10%
34%B2 45%

B3 45%

C1 10%
33%C2 45%

C3 45%

Table 4.5: W3 weights.

Weight Category
Requirement within category weight

A1 25%

20%
A2 40%
A3 25%
A4 10%

B1 10%
40%B2 45%

B3 45%

C1 10%
40%C2 45%

C3 45%

Table 4.6: W4 weights.

Scores

MDT Papyrus

Weights EMF/GMF UML2Tools Current Potential

W1 5.680 6.845 5.043 7.122

W2 5.328 6.712 4.968 6.944

W3 5.847 6.888 4.480 7.038

W4 5.620 6.730 4.330 6.840

Table 4.7: Comparison of several way of obtaining final scores of
technologies.

We can easily see that the influence of weight assignments on fi-
nal ratings is not strong enough to change the ordering of the tools,
which in every assignment is UML2Tools, EMF/GMF and MDT Pa-
pyrus (considering its current state).

MDT Papyrus deserves a remark. It is a promising tool, but its cur-
rent state renders too difficult to assess its capabilities – and hence its

4.7 considerations 53

!"#$%&'()*+'

!"#$%&' ()*+,)* -)./0112')30456789:'4;:99"<&)30456789:'471&"<>

!= >?@AB @?AC> >?BCD E?=//

!/ >?D/A @?E=/ C?F@A @?FCC

!D >?ACE @?AAA C?CAB E?BDA

!C >?@/B @?EDB C?DDB @?ACB

!

"

#

$

%

&

'

(

)

*+,-.+, /+0#12234 +516789:;<46

=<;;>?@

+516789:;<46

92@>?@A83

B" B# B$ B%

,$-+&.

Figure 4.12: Histogram for the final ratings presented in table 4.7.

low rating. Given the remarkable pedigree of its “predecessors” (Top-
Cased, MOSKitt, Papyrus) and the effort put in the development, we
believe that it can at least reach the level of UML2Tools.

4.7 considerations

The ratings we have calculated clearly show that from a technological
point of view UML profiles perform better than metamodeling. Inter-
estingly, UML profiles are also the preferred choice by industry, due to
their standard nature and the broader (perceived) support they have.
While the two approaches are equivalent with regard to the mere def-
inition of languages, we see marked differences in view management
and needed effort.

The profile approach takes great advantage of existing UML editors,
that usually are full of capabilities developed by long-time experts.
This means that we have a good infrastructure that needs few and little
adjustments to be incorporated in an MDE development environment.

On the other hand, metamodeling is more flexible but requires to
expend considerable effort to support every language we devise for
our environment. In the case of EMF and GMF, part of this effort is
due to the lack of proper support of quite common features, which
requires the user to realize extensive changes and additions – like live
synchronization of diagrams using the same model. Even with more
capable tools, we believe that we still need significant effort that cannot
be avoided – indeed every language has its peculiar characteristics that
must be specifically supported. As an informal proof, as of September
10th 2009, the development of class diagrams and related profile sup-
port in MDT Papyrus lasted for more than three months – and it’s not
over yet.

Let us remark that these results are drawn at a given moment in
time and things can change in the future with the introduction of new
features in considered tools.

54 technological investigation

We would like to make a final remark. Inside Eclipse there are du-
plicated UML2 editors, although it was stated that UML2Tools concen-
trates on automatic editor generation and MDT Papyrus on building
the end user experience. It is interesting to see how this duplication
will be handled. In our opinion, it might happen than one set will be
chosen and the other discontinued. This can be a problem for the peo-
ple that have chosen the discontinued tools – although they are based
on GMF and thus can be maintained by adopters, GMF requires lots
of knowledge that hardly a normal user can have.

4.8 summary

Choosing how to define languages in a MDE development environ-
ment should not only based on methodological reasoning, but also on
technological considerations. In fact, all the features of the environ-
ment are implemented on top of languages: if the way the languages
are defined makes the implementation difficult, our environment will
become costly to build and maintain.

To this end, in this chapter we compared tools representative of UML
profiles and metamodeling in order to evaluate the effort needed to:

1. define the metamodels of languages, with particular attention to
graphical syntaxes and constraints;

2. implement views defined on a single model by means of diagrams,
a piece of our solution to reduce the complexity of proving the cor-
rectness of transformations.

All the tools run on top of Eclipse.
For the metamodeling approach we chose EMF and GMF. The for-

mer permits to define metamodels while the latter enables the creation
of graphical editors for them. While these technologies are quite ma-
ture and full of capabilities with deep support for extensibility, we find
important flaws:

• they lack an extensive and organized documentation, in particu-
lar with regard to GMF and advanced features of EMF;

• the effort required to implement views is considerable. Contrary
to our expectations, GMF does not offer ready-to-use facilities to
this end but requires manual modifications.

Tools for UML profiles are more promising. We chose two tools,
UML2Tools and MDT Papyrus. Both are based on the MDT UML2

implementation of the metamodel of UML2 and both employ EMF
and GMF.

MDT UML2 provides a solid implementation of UML2, in particular
it offers several options for the definitions of profiles.

UML2Tools consists of a series of GMF editors for some of UML
2 diagrams. These editor are quite refined, with remarkable support
for views – it’s even possibile to choose which elements to show in
a diagram. UML2Tools is not thought for end users but as a starting
point for UML 2 tools.

MDT Papyrus is an undergoing effort to build a full-fledged UML 2

environment, with support for SysML. It has an high potential, with

4.8 summary 55

more polish than UML2Tools: unfortunately it is quite difficult to as-
sess its capabilities because it is under development and it lacks several
important features.

To conclude, we found that tools supporting UML profile are more
effective that those that support metamodeling, because they incorpo-
rate features that ease the development of additional capabilities, while
the latter ones are quite low level. This conclusion is even stronger if we
consider that in this particular comparison UML tools are built using
metamodeling technologies – this means that the support of languages
is very important.

5C O N C L U S I O N S

Model Driven Engineering (MDE) is a promising approach that per-
mits to develop complex software systems with higher quality and
shorter development times than approaches that employ manual cod-
ing and programming languages. It is based on two principles:

1. software is specified by means of models that express with clar-
ity requirements and functionalities using the concepts of the ap-
plication domain. This way we avoid the burden of computation
concepts specific to coding and programming languages and fur-
thermore we allow stakeholders, who know well the domain and
its intricacies but are perhaps less knowledgeable when it comes to
implementation, to directly modify the model. The languages used
to create the models are called Domain Specific Languages (DSL),
since they are specific to a domain and do not contain any foreign
concept;

2. the final implementation of the system is obtained through auto-
mated transformations from models. The use of transformations
guarantees that the implementation is coherent with the specifica-
tion and obtained thorough the use of proven solutions and pat-
terns. Moreover, we can change the underlying technology by sim-
ply changing the transformations, without need to replace the mod-
els.

Nevertheless, MDE should be applied correctly in order to obtain
these benefits: if we overlook some aspects we will risk to spend too
much effort on the construction and the maintenance the development
environment, hampering the effectiveness of MDE.

Thus in this thesis we have discussed several interesting facts we
hope to be of assistance in unleashing correctly MDE in the develop-
ment of software systems, in particular high-integrity and real-time
systems. For this purpose, we considered a particular MDE initiative,
Model Driven Architecture (MDA), endorsed by the OMG. In this
approach the system is first specified using a Platform Independent
Model (PIM) which abstracts away from technological aspects and fo-
cuses on functionalities; then we choose the execution platform and its
parameters and we transform the PIM into a Platform Specific Model
(PSM), on which we run static analyses to assess its adherence to re-
quirements. If the results of analysis don’t satisfy us, we go back to the
PIM; otherwise with a transformation we turn the PSM into the final
implementation of the system, ready to be compiled and executed.

Our first contribution highlighted the very nature of application do-
mains. While they are surely composed of specific concepts and prob-
lems that require dedicated solutions, they also share concerns with
similar domains – consider for example the need to guarantee tempo-
ral deadlines in automotive, railway and aerospace domains (to name
a few). At first glance it might appear that this duplication is not so
troublesome and every application domain can tackle on their own
these concerns. Beside the fact we would waste considerable effort in

57

58 conclusions

resolving over and over again the same problems, these concerns are
such that they require scientific knowledge, method and discussion to
be tackled effectively, especially if we want solutions that are sound
and cost effective. Thus application domains should be supported by
so called scientific bodies of knowledge, which provide proven solu-
tions to transversal and recurrent concerns.

In our second contribution we presented two problems that stand be-
fore us in the construction of an MDE development environment that
leverages these two kinds of domains and guarantees correctness-by-
construction with high confidence and reasonable effort. These prob-
lems are:

1. the definition of DSL. These languages should express appropriately
the concepts of both application domains and scientific bodies of
knowledge. We can choose to implement them with UML profiles
or with metamodeling, and it is not clear which way to go;

2. the complexity of proving the correctness of transformations. These proofs
are important in that they guarantee that output models do not dis-
tort the semantics of input models and that both domain-specific
and scientific knowledges are correctly applied. Unfortunately, these
proof are very expensive. We are thus interested in understanding
the factors of the development environment that impact the most
on this complexity and the way to lower their influence.

We analyzed and discussed these problems from a scientific point
of view, trying to devise some ways to address them or to decide on
them. With regards to the latter problem, we were able to isolate some
factors that impact on the complexity of proofs:

1. the number of views that compose the PIM. A software system should
address a conspicuous number of concerns (e.g. security, concur-
rency, performance, . . .) and this is reflected by its complexity and
size. We can obviously represent such a system with a single model
– but its specification and comprehension will be greatly impaired,
since the various concerns tend to be tangled. For this reason soft-
ware architectures are usually described by means of views – one
or more models that represent some specific concerns. Focusing on
a few concerns, views are easier to understand and to manipulate.
Thus views should be absolutely employed in the specification of
PIM.

However views cannot be arbitrary. Indeed, we have to prove that
they are composable, that is that their semantics agree on overlaps,
and the effort of this proof grows proportionally with the number of
views. The cost of proving composability depends also on the way
views are managed. If we opt for the synthetic approach, views are
specified with one or more models that are later composed, and
therefore the cost is likely to be high due to the number of mod-
els and the different employed metamodels. If instead we opt for
the projective approach, views are derived without transformations
from a single underlying model, so we have only to prove that the
model is valid and views are derived correctly;

2. the incremental construction of PIM. Realistically, software is not spec-
ified completely the first time; instead it is more likely that we spec-
ify it piecewise. We would also like to receive early feedback on the

conclusions 59

underspecified PIM we construct, in order to validate our design.
This is possible if we allow the generation of PSM from this under-
specified PIM, in order to run analyses on them and know if our
design is apt or not. This capability is desirable but has several im-
portant implications on the transformation from PIM to PSM. In fact
we need a series of transformations, one for each allowed degree of
PIM completeness. These transformations couldn’t be devised inde-
pendently, since they should behave coherently on the same piece
of PIM semantics: a reasonable approach is to create the one that
targets the completely specified PIM and then derive the ones that
work on underspecified PIM. Proving the correctness of all these
transformation is clearly more complex, in that we have to show
that:

a) each transformation is correct;

b) given a chunk of PIM semantics, all the transformations that may
apply to it behave the same way as the one that targets the com-
pletely specified PIM;

c) each specific transformation is triggered only for the intended
degree of completeness of the PIM.

3. the number of metamodels used to specify the views of the PIM and the
various increments of the PSM. A proof of correctness of a transfor-
mation should be able to compare the semantics of input and out-
put models, and thus it should know the semantics of associated
metamodels. If we have one metamodel, we have no problem: but
in real approaches we tend to have several metamodels. We have
already seen that views of the PIM can refer to different metamod-
els; moreover if we allow incremental construction of the PIM, each
PSM should support different analyses according to the degree of
completeness and thus they are likely to have different metamodels.

Different metamodels define their semantics in different ways. so
we need to establish correspondences between the semantics of the
metamodels, in order to know how the same semantics is modelled
in each of them. This work should be done for each pair of meta-
models and thus the effort grows quadratically with the number of
metamodels. Having too many metamodels could then result in a
considerable endeavour.

The former problem with the definition of DSL revealed itself tougher
than we expected. Their innate characteristics aren’t enough to decide
between metamodelling and UML profiles: the former gives more free-
dom in the definition of the language but has less tool support, while
the reliance of the latter on UML is at the same time a strength – es-
pecially with regard to tool support – and a weakness – we can only
add to the UML metamodel. We then singled out additional element,
hoping that they could guide the decision:

• analyzing the definition of UML profiles, we criticized its poor
description and discovered that the mechanism intended for the
selection of a subset of the UML metamodel is not fine-grained
enough to be useful and moreover is not deemed mandatory for
tools to implement – in practice a profile always references the en-
tire UML metamodel. These are important obstacles for the adop-
tion of profiles; on the other hand, there is no affirmed standard

60 conclusions

for metamodeling, since every tool has its proprietary metamod-
eling language, and this affect the longevity of this approach;

• we investigated the relationship between MOF and UML: in the
context of MDA the former seems to be preferred to the latter,
despite the presence of the profiles mechanism, and we wanted
to confirm this impression. A thorough analysis of OMG specifi-
cations and requests for proposals has shown how the two stan-
dards have indeed the same importance and they are deeply tied
to one another, in that they share a language core with concepts
apt for metamodeling and class modeling;

• we conducted an informal survey of tools for creating DSL, to
see if they lean to a particular approach. We discovered that both
approaches seem to be equally supported.

Despite our arguments, there was no clear indication about which
approach to pick – so it might seem that we can choose either ap-
proach. This answer did not satisfy us, because upon languages we
build all the functions of the development environment (editors, trans-
formations, serialization, views, . . .) and thereby they determine on
the effort needed to implement them. If an approach requires too la-
bor to be built and maintained, our environment might be doomed to
failure.

So, as last contribution, we evaluated technologies representatives of
UML profile and metamodelling to see whether, to which degree and
at which cost they allow us to implement part of our methodology
for MDE adoption that we proposed so far. In particular, we drew our
attention to two aspects:

1) the definition of the languages, in particular their constraints and
graphical syntaxes;

2) the support of views on a model using the projective approach, with
the use of a single metamodel and with custom synchronization
policies.

All considered tools were part of the Modeling project inside Eclipse.
For the metamodeling approach we picked EMF and GMF, two funda-
mental tools that are used extensively for other tools inside the Mod-
eling project (including the reviewed UML tools). EMF permits to cre-
ate metamodels of language along with basic tree editors and with
serialization support; GMF provides infrastructure and tools for the
construction of graphical editors for EMF models. Among their depen-
dencies, we recall EMF Validation, which permits the specification of
constraints for EMF models, and GEF, which furnishes the support for
the graphical capabilities of GMF. The definition of languages can be
carried out quite easily, and EMF provides several options to tailor the
generated code to desired needs. The construction of graphical editors
is eased by the use of a model-driven approach that avoids repetitive
work and at the same time permits extensive customization to support
particular behaviours. However, we believe that the effort we spent was
excessive: this is due to little support by GMF for common scenarios
and the lack of properly organized documentation for both tools.

For the UML profile approach we chose MDT UML2 for the im-
plementation of UML2 metamodels and picked two graphical editors:

conclusions 61

UML2Tools and MDT Papyrus. UML2Tools is made up of a series of
editors for UML diagrams and it is meant to be reused in UML en-
vironments; MDT Papyrus instead is an UML environment devised
for the end user, with future support for SysML. All the mentioned
tools are based upon EMF and GMF, but despite this dependency they
supported far better the aspects of interest. MDT UML2 is rock-solid,
with adherence to version 2.2 of UML 2 and extensive support for
UML profiles. UML2Tools is provided with a fine-grained synchroniza-
tion mechanism and graphical support for profiles, although we noted
that it is not well polished and it lacks some diagrams. MDT Papyrus
showed great potential, given the care showed by the developers, but
we should wait for the first public release to assess more precisely its
capabilities.

Our evaluation showed that, in this moment, UML profiles permit
to implement the chosen approach easily and with less effort: indeed
each language should be supported in its own and specific way and
building this support for custom languages has a huge cost. This result
was further corroborated by the fact that the tools that employ UML
profiles are implemented using the ones that employ metamodelling:
even with the same technological basis, profiles have a consistent ad-
vantage over metamodeling. To conclude, for a sound MDE method-
ology we should adopt UML profiles, which due to their standard
nature are well supported and require less effort to be incorporated
into a development environment.

AA R C H I T E C T U R E O F G M F

GMF architecture is quite wide, in order to support adequately (i) edi-
tor generation through transformations and (ii) customization. At first
glance it is composed of two major parts, GMF Runtime and GMF
Tooling, which we explain in the following sections. In the last section
we also clarify the dependencies depicted in picture 4.1.

a.1 gmf runtime

It specializes the infrastructure of Graphical Editing Framework (GEF)
[67, 68, 69]. GEF employs the model-view-controller pattern, focusing
on the view and the controller and allowing any kind of model (tech-
nologically speaking). The view is made up of figures, connections and
compartments; the controller is made up of edit parts, which have two
important functions:

1. they keep synchronized the view with the model;

2. they translate operations done on the view (e.g. the connection of
two figures or the addition of a figure) into operations done on
the model. Edit parts delegates the decision of issued commands
to specialized components called edit policies: this way the logic
that performs this translation is not monolithic, but it broken in
more manageable chunks, which can be also be easily replaced and
added.

!"#$%&'()

#*+",

-*&$&'*%$,)

#*+",

./$01'($,)"+'&*/

Figure A.1: Models used by a GMF editor. The semantic model con-
tains the data we are interested in; the notational model es-
tablishes how to display the entities of the semantic model
in the editor.

63

64 architecture of gmf

In the GMF Runtime we find a series of classes designed to make
GEF work with EMF models. It is worth noting that GMF editors work
with two models [70] (figure A.1):

• the semantic model, which contains the data we want to manip-
ulate;

• the notational model, which specify how entities in the semantic
models are displayed in the diagram. The notational model is
defined using a generic metamodel and the allowed composite
entities are defined through an extension point. Obviously, the
notational model contains references to elements of the semantics
model.

GMF Runtime provides several extension points in order to cus-
tomize its behaviours: we can customize which model operations we
should execute when the user request an action, we can influence the
layout of the shapes, we can modify the palette of tools, we can specify
additional edit policies to existing edit parts, and so on.

a.2 gmf tooling

Since GMF Runtime is employed in similar way in every editor, GMF
Tooling provides facilities to specify an editor at high level and then
produces its code through transformations [71, 72] (figure A.2).

Assuming we have already defined the metamodel, we have to spec-
ify three additional models:

• the graphical definition model, which specifies all the figures,
connections and compartments that we will have on the editor;

• the tool definition model, which contains all the tools available
in the editor for creating shapes and connections;

• the mapping model, in which we relate the metamodel, the graph-
ical definition model and the tool definition model, indicating for
each domain element: (i) the connections, shapes and contain-
ment boxes used to display it; and (ii) the tool used to create it
in the graphical editor.

Using a transformation, from the mapping model we obtain a gen-
erator model in which we detail several generation details – like con-
figuration options (names of Java packages, ID for plugins and other
elements, . . .) and behaviours (synchronization policy, validation, . . .).
Through another transformation, the generator model is used to gen-
erate the code for the graphical editor.

GMF Tooling allows some degree of customization [72]:

• the transformation from the mapping model to the generator
model can be substituted with a custom one;

• the transformation from the generator model to the code can be
customized in an aspect oriented way;

• the metamodel of the generator model can be extended in order
to allow the specification of additional parameters, which can be
used in the previous transformation.

A.3 dependencies 65

!"#$

%&'()

*+,-./0,)$

'(1/2/3/&2$

%&'()

4&&)$

'(1/2/3/&2$

%&'()

4+,251&+%,3/&2

",--/26$

%&'()

+(1(+5$3&+(1(+5$3&

+(1(+5$3&

*(2(+,3&+$

%&'()

4+,251&+%,3/&2

*+,-./0,)$

('/3&+

Figure A.2: Workflow employed by GMF Tooling to generate automat-
ically a graphical editor. In addition to the metamodel, we
should specify a graphical definition model and a tool defi-
nition model. All the before mentioned models are referred
by the mapping model, in which we specify for each entity
in the metamodel the shape used to show it and the tool
used to create it. This mapping model is transformed into
a generator model, in which we can specify several imple-
mentation details. A final transformation takes the genera-
tor model and produces the plugin for the graphical editor.

a.3 dependencies

As we described, GMF has a twofold nature: it is used to both generate
and execute the graphical editors. At this point the attentive reader will
wonder whether the relationships in 4.1 are valid for both Tooling and
Runtine or not.

In fact picture 4.1 is simplified in this sense, with the aim to present
to the reader all the technologies without excessive burden. Figures
A.3 and A.4 portray the exact dependencies of GMF Tooling and GMF
Runtime, respectively. Summing up their content, in the tooling part
we only employ transformation tools, namely Xpand e QVTO, while in
the runtime part we use frameworks and libraries necessary to operate
the graphical editor. Moreover, the final graphical editor does not use
GMF Tooling, instead it is generated by GMF Tooling.

Also the dependency on EMF is sketched, because most of the time
we are not directly dependent on EMF but on the plugins that imple-
ment the support for a particular metamodel (e.g. the tooling definition
metamodel, the graphical definition metamodel, . . .). For the sake of

66 architecture of gmf

!"#
$%&'(')'*(+*&+,%)-,*.%/0+-/*(1+2')3+

4-0'5+%.')*60+-(.+0%6'-/'7-)'*(+0899*6)

!.')*6:"#+;**/'(1

<9-(.
;6-(0&*6,-)'*(+*&+!"#+

,*.%/0+'()*+)%=)+-6)'&-5)0

>?;@
"*.%/+)*+,*.%/+

)6-(0&*6,-)'*(

1%(%6-)%0

Figure A.3: Technologies employed by GMF Tooling. While in figure
4.1 the editor generically uses GMF, in fact it does not
use GMF Tooling, but instead it is generated from GMF
Tooling.

!"#
$%&'(')'*(+*&+,%)-,*.%/0+-/*(1+2')3+

4-0'5+%.')*60+-(.+0%6'-/'7-)'*(+0899*6)

!.')*6

:!#
;%-/'7-)'*(+*&+16-93'5-/+%.')*60+

5*(&*6,'(1+)*+)3%+,*.%/<='%2<

5*()6*//%6+9-))%6(

"$>+?@A
B,9/%,%()-)'*(+*&+)3%+

?@A+/-(18-1%

:"#+;8()',%

!"#+C-/'.-)'*(
D9%5'&'5-)'*(+-(.+%(&*65%,%()+

&+5(0)6-'()0+*(+!"#+,*.%/0

!"#E!.')
F6*='.%0+%.')'(1+.*,-'(0+)*+

)6-5G+-(.+8(.*+53-(1%0+*(+

!"#+,*.%/0

!"#+>6-(0-5)'*(
F6*='.%0+)6-(0-5)'*(-/+%.')'(1+

.*,-'(0H+)3-)+-..+)6-(0-5)'*(-/+

0%,-()'50+)*+%.')'(1+.*,-'(0

Figure A.4: Technologies employed by GMF Runtime.

clarity we omitted and continue to omit them. Let us note that in these
drawings JET is never used: actually it is used during the generation
of code for metamodels, not during the use of this code.

The reasoning done in this section also applies to figure 4.2 and 4.3.

BD E TA I L E D C H A R A C T E R I S T I C S O F A N A LY Z E D
T O O L S

The details about the tools are to be found in table B.1, comprising the
effort we spent on the study of each of them.

Tool Version Date Hours spent on study

EMF 2.5 24/06/2009 47

GMF 2.2 24/06/2009 86

MDT UML2 3.0 24/06/2009 19

UML2Tools 0.9 24/06/2009 17

MDT Papyrus r471 (svn) 20/08/2009 17

Table B.1: Table with analyzed tools and their relevant properties.

Related technologies are reported in table B.2. We recall that major
number versions equal to 0 (zero) indicate that associated tools are
in incubation phase and thus they are still developing processes and
communities required by projects hosted in Eclipse.

Tool Version Date

EMF Transaction 1.3 24/06/2009

EMF Validation 1.3 24/06/2009

MDT OCL 1.3 24/06/2009

GEF 3.5 24/06/2009

Xpand 0.7 24/06/2009

JET 1.0 24/06/2009

QVTO 1.0 24/06/2009

EEF cvs 09/07/2009

Table B.2: Table with related technologies and their relevant properties.

67

CS O M E A D V I C E S O N E M F A N D G M F

Although it’s not completely related to the aim of this thesis, we detail
some tasks in EMF and GMF that challenged us for lack of documen-
tation. This way we hope to help anyone who wants to approach these
technologies.

c.1 extrinsic id

To render more robust references to elements of our models, EMF pro-
vides extrinsic ID, that is the automatic assignment of an UUID to each
created element. The exact procedure to enable this for a particular
metamodel is:

• in the genmodel click on the metamodel package. In the prop-
erties view change the “Model -> Resource Type” property to
“XMI”;

• generate the model code;

• under the X. util package locate the file XResourceImpl.java (in
place of X substitute prefix and packages used for the genera-
tion). In the XResouceImpl class override the useUUIDs method so
it returns true:

@Over r ide
p r o t e c t e d boo l ean useUUIDs () {

r e t u r n t r u e ;
}

• in plugin.xml add an extension to the org. eclipse .emf.ecore . extension_parser
extension point and fill it with the same data of the extension to
org. eclipse .emf.ecore .content_parser.

c.2 shortcut mechanism

Enabling shortcuts in a GMF editor is not difficult, but some passages
can be quite tricky. We first introduce the procedure for a simple sce-
nario, in which in a editor E1 we want to use shortcuts to elements of
the same metamodel X. In this scenario the steps are:

1) in the generator model, find the “Gen Diagram” element;

2) the property “Contains Shortcuts To” should be filled with the file
extension specified for models conforming to X;

3) the property “Shortcut Provided For” should be filled with the
model ID of the graphical editor. This may sound a little strange
– we were expecting the file extension again. We investigated a little
on this behaviour and we believe this is due to the fact that GMF
editors work directly with notational elements (which imply deter-
mined semantic elements) and these are known only to graphical
editors;

69

70 bibliography

4) in the “Context Menu” element add an element named “Create
Shortcut Action”. This step is often overlooked in the documenta-
tion.

Suppose now we want in this editor E1 to reference elements from
the metamodel Y and suppose also there is an editor E2 that works on
metamodel Y. We should follow these steps:

1) in the generator model for E1, find the “Gen Diagram” element;

2) the property “Contains Shortcuts To” add the file extension speci-
fied for models conforming to Y;

3) in the “Context Menu” element ensure to have the element “Create
Shortcut Action”;

4) open the generator model for E2 and find the “Gen Diagram” ele-
ment;

5) in this generator model the property “Shortcut Provided For” should
be filled with the model ID of E1.

More information can be found in this wiki page: http://wiki.eclipse.
org/GMF_GenModel_Hints

http://wiki.eclipse.org/GMF_GenModel_Hints
http://wiki.eclipse.org/GMF_GenModel_Hints

B I B L I O G R A P H Y

[1] E. Miotto and T. Vardanega, “On the integration of domain-
specific and scientific body of knowlege in Model Driven Engi-
neering,” in Proceedings of Workshop on the Definition, Evaluation,
and Exploitation of Modelling and Computing Standards for Real-Time
Embedded Systems (STANDRTS’09), 2009.

[2] ——, “An assessment of candidate MDE technologies,” 2010, sub-
mitted to DATE2010 – 13th Conference and Exhibition on Design,
Automation & Test in Europe.

[3] “The assert-project — Final Report,” ASSERT Project, Tech. Rep.,
December 2008. [Online]. Available: http://www.assert-project.
net/IMG/zip/Assert-Project-Final-Report.zip

[4] D. C. Schmidt, “Guest Editor’s Introduction: Model-Driven
Engineering,” Computer, vol. 39, no. 2, pp. 25–31, February 2006.
[Online]. Available: http://dx.doi.org/10.1109/MC.2006.58

[5] M. Bordin, M. Panunzio, and T. Vardanega, “Beyond ASSERT: In-
creasing the Effectiveness of Model-Driven Engineering,” in 13th
Eurospace Conference on Data Systems in Aerospace, Istanbul, Turkey,
May 2009.

[6] J. M. Nowacki, “Kurier font,” Entry at CTAN, February
2007. [Online]. Available: http://tug.ctan.org/tex-archive/fonts/
kurier/

[7] B. Selic, “The Pragmatics of Model-Driven Development,” IEEE
Software, vol. 20, no. 5, pp. 19–25, Sept.-Oct. 2003. [Online].
Available: http://dx.doi.org/10.1109/MS.2003.1231146

[8] R. France and B. Rumpe, “Model-driven Development of
Complex Software: A Research Roadmap,” in Future of Software
Engineering, 2007. FOSE ’07. IEEE Computer Society, 2007, pp. 37–
54. [Online]. Available: http://dx.doi.org/10.1109/FOSE.2007.14

[9] J.-M. Favre, “Foundations of Meta-Pyramids: Languages vs.
Metamodels – Episode II: Story of Thotus the Baboon,” in
Language Engineering for Model-Driven Software Development, ser.
Dagstuhl Seminar Proceedings, J. Bezivin and R. Heckel, Eds.,
no. 04101. Dagstuhl, Germany: Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl,
Germany, 2005. [Online]. Available: http://drops.dagstuhl.de/
opus/volltexte/2005/21

[10] J. Miller, J. Mukerji, and Others, “MDA Guide Version 1.0.1,”
Object Management Group, Tech. Rep., 2003. [Online]. Available:
http://www.omg.org/cgi-bin/doc?omg/03-06-01

[11] Object and Reference Model Subcommittee of the Architecture
Board, “A Proposal for an MDA Foundation Model, ormsc/05-04-
01,” Object Management Group, Tech. Rep., April 2005. [Online].
Available: http://www.omg.org/docs/ormsc/05-04-01.pdf

71

http://www.assert-project.net/IMG/zip/Assert-Project-Final-Report.zip
http://www.assert-project.net/IMG/zip/Assert-Project-Final-Report.zip
http://dx.doi.org/10.1109/MC.2006.58
http://tug.ctan.org/tex-archive/fonts/kurier/
http://tug.ctan.org/tex-archive/fonts/kurier/
http://dx.doi.org/10.1109/MS.2003.1231146
http://dx.doi.org/10.1109/FOSE.2007.14
http://drops.dagstuhl.de/opus/volltexte/2005/21
http://drops.dagstuhl.de/opus/volltexte/2005/21
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/docs/ormsc/05-04-01.pdf

72 bibliography

[12] S. Kent, “Model Driven Engineering,” in Integrated Formal Methods
– Third International Conference, IFM 2002 Turku, Finland, May
15–18, 2002 Proceedings, ser. Lecture Notes in Computer Science,
vol. 2335. Springer, 2002, pp. 286–298. [Online]. Available:
http://dx.doi.org/10.1007/3-540-47884-1_16

[13] J.-M. Favre, “Foundations of Model (Driven) (Reverse) Engineer-
ing : Models – Episode I: Stories of The Fidus Papyrus and of
The Solarus,” in Language Engineering for Model-Driven Software
Development, ser. Dagstuhl Seminar Proceedings, J. Bezivin
and R. Heckel, Eds., no. 04101. Dagstuhl, Germany: Interna-
tionales Begegnungs- und Forschungszentrum für Informatik
(IBFI), Schloss Dagstuhl, Germany, 2005. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2005/13

[14] R. L. Glass, “Searching for the Holy Grail of Software
Engineering,” Communications of the ACM, vol. 45, no. 5, pp.
15–16, May 2002. [Online]. Available: http://doi.acm.org/10.
1145/506218.506231

[15] I. Weisemoller and A. Schiirr, “A Comparison of Standard
Compliant Ways to Define Domain Specific Languages,” in
Models in Software Engineering: Workshops and Symposia at Models
2007 Nashville, Tn, USA, September 30-October 5, 2007, Reports
and Revised Selected Papers, ser. Lecture Notes in Computer
Science, vol. 5002. Springer, 2008, pp. 47–58. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-69073-3_6

[16] “Unified Modeling Language Infrastructure, version 2.2,
formal/2009-02-04,” Standard, Object Management Group,
2009. [Online]. Available: http://www.omg.org/spec/UML/2.
2/Infrastructure/PDF/

[17] “Unified Modeling Language Superstructure, version 2.2,
formal/2009-02-02,” Standard, Object Management Group,
2009. [Online]. Available: http://www.omg.org/spec/UML/2.
2/Superstructure/PDF/

[18] “Papyrus,” Software tool, July 2009. [Online]. Available: http:
//www.papyrusuml.org/

[19] “Common Facilities RFP-5: Meta-Object Facility, cf/96-05-02,”
Object Management Group, June 1996. [Online]. Available:
http://www.omg.org/cgi-bin/doc?cf/96-05-02.pdf

[20] “Object Analysis & Design RFP-1, ad/96-05-01,” Ob-
ject Management Group, June 1996. [Online]. Available:
http://www.omg.org/cgi-bin/doc?ad/96-05-01.pdf

[21] “UML Proposal to the Object Management Group, version
1.1, ad/97-08-02,” September 1997. [Online]. Available: http:
//www.omg.org/cgi-bin/doc?ad/97-08-02.pdf

[22] “Meta Object Facility (MOF) Core Specification, Version 2.0,
formal/06-01-01,” Standard, Object Management Group, January
2006. [Online]. Available: http://www.omg.org/spec/MOF/2.0/
PDF/

http://dx.doi.org/10.1007/3-540-47884-1_16
http://drops.dagstuhl.de/opus/volltexte/2005/13
http://doi.acm.org/10.1145/506218.506231
http://doi.acm.org/10.1145/506218.506231
http://dx.doi.org/10.1007/978-3-540-69073-3_6
http://www.omg.org/spec/UML/2.2/Infrastructure/PDF/
http://www.omg.org/spec/UML/2.2/Infrastructure/PDF/
http://www.omg.org/spec/UML/2.2/Superstructure/PDF/
http://www.omg.org/spec/UML/2.2/Superstructure/PDF/
http://www.papyrusuml.org/
http://www.papyrusuml.org/
http://www.omg.org/cgi-bin/doc?cf/96-05-02.pdf
http://www.omg.org/cgi-bin/doc?ad/96-05-01.pdf
http://www.omg.org/cgi-bin/doc?ad/97-08-02.pdf
http://www.omg.org/cgi-bin/doc?ad/97-08-02.pdf
http://www.omg.org/spec/MOF/2.0/PDF/
http://www.omg.org/spec/MOF/2.0/PDF/

bibliography 73

[23] “Request For Proposal: MOF 2.0 Core RFP, ad/2001-11-05,”
Object Management Group, November 2001. [Online]. Available:
http://www.omg.org/cgi-bin/doc?ad/01-11-14.pdf

[24] “Request For Proposal: UML 2.0 Infrastructure, ad/2000-09-01,”
Object Management Group, September 2000. [Online]. Available:
http://www.omg.org/cgi-bin/doc?ad/00-09-01.pdf

[25] K. Duddy, “UML2 Must Enable a Family of Languages,”
Communications of the ACM, vol. 45, no. 11, pp. 73–75,
November 2002. [Online]. Available: http://dx.doi.org/10.1145/
581571.581596

[26] “Eclipse Modeling Framework (EMF),” Software tool, July 2009.
[Online]. Available: http://www.eclipse.org/modeling/emf/

[27] Metacase, “MetaEdit+,” Software tool. [Online]. Available:
http://www.metacase.com

[28] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thoma-
son, G. Nordstrom, J. Sprinkle, and P. Volgyesi, “The Generic Mod-
eling Environment,” in Workshop on Intelligent Signal Processing.
IEEE, 2001.

[29] C. Amelunxen, A. Königs, T. Rötschke, and A. Schürr, “MOFLON:
A Standard-Compliant Metamodeling Framework with Graph
Transformations,” in Model Driven Architecture – Foundations
and Applications. Second European Conference, ECMDA-FA 2006,
Bilbao, Spain, July 10-13, 2006. Proceedings, ser. Lecture Notes
in Computer Science. Springer, 2006, vol. 4066, pp. 361–375.
[Online]. Available: http://dx.doi.org/10.1007/11787044_27

[30] Jetbrains, “Meta Programming Systems,” Software tool. [Online].
Available: http://www.jetbrains.com/mps/index.html

[31] Microsoft, “DSL Tools,” Software tool. [Online]. Available:
http://msdn.microsoft.com/en-us/vsx/cc677256.aspx

[32] ——, “Oslo,” Software tool. [Online]. Available: http://msdn.
microsoft.com/en-us/oslo/default.aspx

[33] “A UML Profile for MARTE: Modeling and Analysis of Real-
Time Embedded systems, Beta 3, ptc/2009-05-13,” Standard,
Object Management Group, May 2009. [Online]. Available:
http://www.omg.org/cgi-bin/doc?ptc/09-05-13.pdf

[34] “OMG Systems Modeling Language, Version 1.1, formal/2008-11-
02,” Standard, Object Management Group, November 2008. [On-
line]. Available: http://www.omg.org/spec/SysML/1.1/PDF/

[35] Artisan Software Tools, “Artisan Studio,” Software tool. [Online].
Available: http://www.artisansoftwaretools.com

[36] “ISO/IEC WD4 42010, IEEE P42010/D6,” Standard draft,
ISO/IEC, IEEE, January 2009. [Online]. Available: http://www.
iso-architecture.org/ieee-1471/docs/IEEE-P42010-D6.pdf

[37] M. W. Maier, D. Emery, and R. Hilliard, “Software Architecture:
Introducing IEEE Standard 1471,” Computer, vol. 34, no. 4, pp.
107–109, April 2001. [Online]. Available: http://ieeexplore.ieee.
org/xpls/abs_all.jsp?arnumber=917550

http://www.omg.org/cgi-bin/doc?ad/01-11-14.pdf
http://www.omg.org/cgi-bin/doc?ad/00-09-01.pdf
http://dx.doi.org/10.1145/581571.581596
http://dx.doi.org/10.1145/581571.581596
http://www.eclipse.org/modeling/emf/
http://www.metacase.com
http://dx.doi.org/10.1007/11787044_27
http://www.jetbrains.com/mps/index.html
http://msdn.microsoft.com/en-us/vsx/cc677256.aspx
http://msdn.microsoft.com/en-us/oslo/default.aspx
http://msdn.microsoft.com/en-us/oslo/default.aspx
http://www.omg.org/cgi-bin/doc?ptc/09-05-13.pdf
http://www.omg.org/spec/SysML/1.1/PDF/
http://www.artisansoftwaretools.com
http://www.iso-architecture.org/ieee-1471/docs/IEEE-P42010-D6.pdf
http://www.iso-architecture.org/ieee-1471/docs/IEEE-P42010-D6.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=917550
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=917550

74 bibliography

[38] “Eclipse Modeling Project,” Eclipse project, September 2009.
[Online]. Available: http://www.eclipse.org/modeling/

[39] “Eclipse 3.5 “Galileo”,” Software tool, July 2009. [Online].
Available: http://www.eclipse.org/galileo/

[40] “Graphical Modeling Framework (GMF),” Software tool, July
2009. [Online]. Available: http://www.eclipse.org/modeling/
gmf/

[41] “Graphical Editing Framework (GEF),” Software tool, July 2009.
[Online]. Available: http://www.eclipse.org/gef/

[42] “EMF Transaction,” Software tool, July 2009. [Online]. Available:
http://www.eclipse.org/modeling/emf/?project=transaction

[43] “EMF Validation,” Software tool, July 2009. [Online]. Available:
http://www.eclipse.org/modeling/emf/?project=validation

[44] “MDT OCL,” Software tool, July 2009. [Online]. Available:
http://www.eclipse.org/modeling/mdt/?project=ocl

[45] “Object Constraint Language, Version 2.0, formal/06-05-01,”
Standard, Object Management Group, May 2006. [Online].
Available: http://www.omg.org/spec/OCL/2.0/PDF

[46] “JET,” Software tool, July 2009. [Online]. Available: http:
//www.eclipse.org/modeling/m2t/?project=jet

[47] “Xpand,” Software tool, July 2009. [Online]. Available: http:
//www.eclipse.org/modeling/m2t/?project=xpand

[48] “Operational QVT,” Software tool, July 2009. [Online]. Available:
http://www.eclipse.org/m2m/

[49] “MDT UML2,” Software tool, July 2009. [Online]. Available:
http://www.eclipse.org/modeling/mdt/?project=uml2

[50] “UML2 Tools,” Software tool, July 2009. [Online]. Available:
http://www.eclipse.org/modeling/mdt/?project=uml2tools

[51] “MDT Papyrus,” Software tool, July 2009. [Online]. Available:
http://www.eclipse.org/modeling/mdt/?project=papyrus

[52] “Topcased,” Software tool, July 2009. [Online]. Available:
http://www.topcased.org/

[53] “MOSKitt,” Software tool, July 2009. [Online]. Available:
http://www.moskitt.org/eng/

[54] “Papyrus Roadmap, version 0.1,” February 2009. [On-
line]. Available: http://dev.eclipse.org/svnroot/modeling/
org.eclipse.mdt.papyrus/trunk/doc/DevelopperDocuments/
PapyrusRoadmapDescription_v2009-02-17.odt

[55] “Extended Editing Framework (EEF) Proposal,” 2009. [Online].
Available: http://www.eclipse.org/proposals/eef/

[56] International Business Machines Corp., “Eclipse Plat-
form Technical Overview,” April 2006. [Online]. Avail-
able: http://www.eclipse.org/articles/Whitepaper-Platform-3.1/
eclipse-platform-whitepaper.pdf

http://www.eclipse.org/modeling/
http://www.eclipse.org/galileo/
http://www.eclipse.org/modeling/gmf/
http://www.eclipse.org/modeling/gmf/
http://www.eclipse.org/gef/
http://www.eclipse.org/modeling/emf/?project=transaction
http://www.eclipse.org/modeling/emf/?project=validation
http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.omg.org/spec/OCL/2.0/PDF
http://www.eclipse.org/modeling/m2t/?project=jet
http://www.eclipse.org/modeling/m2t/?project=jet
http://www.eclipse.org/modeling/m2t/?project=xpand
http://www.eclipse.org/modeling/m2t/?project=xpand
http://www.eclipse.org/m2m/
http://www.eclipse.org/modeling/mdt/?project=uml2
http://www.eclipse.org/modeling/mdt/?project=uml2tools
http://www.eclipse.org/modeling/mdt/?project=papyrus
http://www.topcased.org/
http://www.moskitt.org/eng/
http://dev.eclipse.org/svnroot/modeling/org.eclipse.mdt.papyrus/trunk/doc/DevelopperDocuments/PapyrusRoadmapDescription_v2009-02-17.odt
http://dev.eclipse.org/svnroot/modeling/org.eclipse.mdt.papyrus/trunk/doc/DevelopperDocuments/PapyrusRoadmapDescription_v2009-02-17.odt
http://dev.eclipse.org/svnroot/modeling/org.eclipse.mdt.papyrus/trunk/doc/DevelopperDocuments/PapyrusRoadmapDescription_v2009-02-17.odt
http://www.eclipse.org/proposals/eef/
http://www.eclipse.org/articles/Whitepaper-Platform-3.1/eclipse-platform-whitepaper.pdf
http://www.eclipse.org/articles/Whitepaper-Platform-3.1/eclipse-platform-whitepaper.pdf

bibliography 75

[57] “Ecore Tools,” Software tool, September 2009. [Online]. Available:
http://www.eclipse.org/modeling/emft/?project=ecoretools

[58] “EMFatic,” Software tool, September 2009. [Online]. Available:
http://www.eclipse.org/modeling/emft/?project=emfatic

[59] E. Merks, “Creating Children You Didn’t Know Existed,”
Blog entry, January 2008. [Online]. Available: http://ed-merks.
blogspot.com/2008/01/creating-children-you-didnt-know.html

[60] “SharedEditingDomain – How to share an editing do-
main between several GMF editors,” October 2008.
[Online]. Available: http://code.google.com/p/gmftools/wiki/
SharedEditingDomain

[61] “Bug 174961 - No Actions/Menus created from gmftool-
Description,” Entry in Eclipse Bugzilla, February 2007. [On-
line]. Available: https://bugs.eclipse.org/bugs/show_bug.cgi?
id=174961

[62] “Creating Robust Scalable DSL’s with UML – Compan-
ion projects,” Eclipse update site, August 2009. [Online].
Available: http://archive.eclipse.org/modeling/mdt/updates/
EclipseCon2008-UML-Tutorial/site.xml

[63] J. Bruck and C. Damus, “Creating Robust Scalable DSL’s
with UML,” EclipseCon 2008, 2008, the presentation can
be viewed only with Internet Explorer. [Online]. Available:
http://www.eclipse.org/modeling/mdt/uml2/docs/tutorials/
EclipseCon2008_Tutorial_Creating_Robust_Scalable_DSL_with_
UML_files/frame.html

[64] C. Mraidha and J. Bruck, “[news.eclipse.modeling.mdt.uml2]
Static profile stereotype application problem,” News-
group discussion, May 2009. [Online]. Avail-
able: http://www.eclipse.org/forums/index.php?t=msg&th=
151966&start=0&S=4811449c8a6d5719dfe6d452f888dae5

[65] Christian W. Damus, “[news.eclipse.modeling.mdt.uml2]
Re: EMF validation constraint target for Stereotype
changes,” Newsgroup article, September 2007. [On-
line]. Available: http://dev.eclipse.org/newslists/news.eclipse.
modeling.mdt.uml2/msg01367.html

[66] Y. Tanguy, P. Tessier, and R. Schnekenburger, “Applied Stereotype
implementation in Papyrus,” CEA, Tech. Rep., July 2009. [Online].
Available: http://dev.eclipse.org/svnroot/modeling/org.eclipse.
mdt.papyrus/trunk/plugins/developer/org.eclipse.papyrus.
doc/cookbook/AppliedStereotypeImplInPapyrus_V1.2.doc

[67] B. Majewski, “A Shape Diagram Editor,” December
2004. [Online]. Available: http://www.eclipse.org/articles/
Article-GEF-diagram-editor/shape.html

[68] “GEF Description2,” Wiki article, April 2009. [Online]. Available:
http://wiki.eclipse.org/GEF_Description2

[69] “GEF Programmer’s Guide,” Topic of Eclipse Help, August
2009. [Online]. Available: http://help.eclipse.org/galileo/index.
jsp?topic=/org.eclipse.gef.doc.isv/guide/guide.html

http://www.eclipse.org/modeling/emft/?project=ecoretools
http://www.eclipse.org/modeling/emft/?project=emfatic
http://ed-merks.blogspot.com/2008/01/creating-children-you-didnt-know.html
http://ed-merks.blogspot.com/2008/01/creating-children-you-didnt-know.html
http://code.google.com/p/gmftools/wiki/SharedEditingDomain
http://code.google.com/p/gmftools/wiki/SharedEditingDomain
https://bugs.eclipse.org/bugs/show_bug.cgi?id=174961
https://bugs.eclipse.org/bugs/show_bug.cgi?id=174961
http://archive.eclipse.org/modeling/mdt/updates/EclipseCon2008-UML-Tutorial/site.xml
http://archive.eclipse.org/modeling/mdt/updates/EclipseCon2008-UML-Tutorial/site.xml
http://www.eclipse.org/modeling/mdt/uml2/docs/tutorials/EclipseCon2008_Tutorial_Creating_Robust_Scalable_DSL_with_UML_files/frame.html
http://www.eclipse.org/modeling/mdt/uml2/docs/tutorials/EclipseCon2008_Tutorial_Creating_Robust_Scalable_DSL_with_UML_files/frame.html
http://www.eclipse.org/modeling/mdt/uml2/docs/tutorials/EclipseCon2008_Tutorial_Creating_Robust_Scalable_DSL_with_UML_files/frame.html
http://www.eclipse.org/forums/index.php?t=msg&th=151966&start=0&S=4811449c8a6d5719dfe6d452f888dae5
http://www.eclipse.org/forums/index.php?t=msg&th=151966&start=0&S=4811449c8a6d5719dfe6d452f888dae5
http://dev.eclipse.org/newslists/news.eclipse.modeling.mdt.uml2/msg01367.html
http://dev.eclipse.org/newslists/news.eclipse.modeling.mdt.uml2/msg01367.html
http://dev.eclipse.org/svnroot/modeling/org.eclipse.mdt.papyrus/trunk/plugins/developer/org.eclipse.papyrus.doc/cookbook/AppliedStereotypeImplInPapyrus_V1.2.doc
http://dev.eclipse.org/svnroot/modeling/org.eclipse.mdt.papyrus/trunk/plugins/developer/org.eclipse.papyrus.doc/cookbook/AppliedStereotypeImplInPapyrus_V1.2.doc
http://dev.eclipse.org/svnroot/modeling/org.eclipse.mdt.papyrus/trunk/plugins/developer/org.eclipse.papyrus.doc/cookbook/AppliedStereotypeImplInPapyrus_V1.2.doc
http://www.eclipse.org/articles/Article-GEF-diagram-editor/shape.html
http://www.eclipse.org/articles/Article-GEF-diagram-editor/shape.html
http://wiki.eclipse.org/GEF_Description2
http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.gef.doc.isv/guide/guide.html
http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.gef.doc.isv/guide/guide.html

76 bibliography

[70] “Developer Guide to Diagram Runtime Framework,”
Topic of Eclipse Help, 2005. [Online]. Available:
http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.
gmf.doc/prog-guide/runtime/Developer%20Guide%20to%
20Diagram%20Runtime.html

[71] “GMF Tutorial – Part 1,” Wiki article, August 2008. [Online].
Available: http://wiki.eclipse.org/GMF_Tutorial

[72] A. Tikhomirov and A. Shatalin, “GMF Best Prac-
tices,” EclipseCon 2007, March 2007. [Online]. Available:
http://eclipsezilla.eclipsecon.org/show_bug.cgi?id=3739

[73] I. Vessey, “Problems versus solutions: the role of the application
domain in software,” in ESP ’97: Papers presented at the
seventh workshop on Empirical studies of programmers. New
York, NY, USA: ACM, 1997, pp. 233–240. [Online]. Available:
http://doi.acm.org/10.1145/266399.266419

[74] A. A. Aaby, Introduction to Programming Languages, 1996. [Online].
Available: http://burks.brighton.ac.uk/burks/pcinfo/progdocs/
plbook/index.htm

[75] “Eclipse Development Process,” Eclipse Foundation, August
2008. [Online]. Available: http://www.eclipse.org/projects/dev_
process/development_process.php

[76] J. Bézivin and O. Gerbé, “Towards a Precise Definition of
the OMG/MDA Framework,” in Automated Software Engineering,
2001. (ASE 2001). Proceedings. 16th Annual International Conference
on. Los Alamitos, CA, USA: IEEE, November 2001, pp. 273–280.
[Online]. Available: http://doi.ieeecomputersociety.org/10.1109/
ASE.2001.989813

[77] “Guide to Systems Engineeing Body of Knowledge,” INCOSE
and Lockheed Martin Corporation, Tech. Rep., 2004. [Online].
Available: http://g2sebok.incose.org/

[78] P. Leach, M. Mealling, and R. Salz, “RFC 4122 - A Universally
Unique IDentifier (UUID) URN Namespace,” Proposed Standard,
July 2005. [Online]. Available: http://tools.ietf.org/html/rfc4122

http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.gmf.doc/prog-guide/runtime/Developer%20Guide%20to%20Diagram%20Runtime.html
http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.gmf.doc/prog-guide/runtime/Developer%20Guide%20to%20Diagram%20Runtime.html
http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.gmf.doc/prog-guide/runtime/Developer%20Guide%20to%20Diagram%20Runtime.html
http://wiki.eclipse.org/GMF_Tutorial
http://eclipsezilla.eclipsecon.org/show_bug.cgi?id=3739
http://doi.acm.org/10.1145/266399.266419
http://burks.brighton.ac.uk/burks/pcinfo/progdocs/plbook/index.htm
http://burks.brighton.ac.uk/burks/pcinfo/progdocs/plbook/index.htm
http://www.eclipse.org/projects/dev_process/development_process.php
http://www.eclipse.org/projects/dev_process/development_process.php
http://doi.ieeecomputersociety.org/10.1109/ASE.2001.989813
http://doi.ieeecomputersociety.org/10.1109/ASE.2001.989813
http://g2sebok.incose.org/
http://tools.ietf.org/html/rfc4122

G L O S S A RY

application domain A collection of problems that have something in
common, usually (but not always) the nature of the problem. (Defini-
tion cited from [73])

computation The application of a sequence of operations to a value
to yield another value. A computation is usually performed by a com-
puter. (Definition cited from Chapter 1 of [74])
Computation Independent Model (CIM) In MDA a model that repre-
sents the application domain in which a software system operates.
concern An area of interest in a system important to one or more stake-
holders, for example reliability, performance and security. (Definition
inspired by [36])

Domain Specific Language (DSL) A language that contains concepts
related to a particular application domain.

Eclipse
Eclipse 1) An open source framework apt for the construction of
development environment and applications.
Eclipse 2) A collection of open source projects that leverage the
Eclipse framework.

Eclipse Modeling Framework (EMF) Framework contained in Eclipse
which permits the definition of metamodels and the manipulation of
conforming models.
edit part Class of GEF that is responsible for keeping the view con-
sistent with the model and for translating user requests into proper
model changes.
edit policy Class of GEF employed by edit parts to obtain the opera-
tions to do on the model to obey to a given user request.
extension point The mechanism used by a plugin in Eclipse to allow
other plugins to extend its behaviour. An extension point is described
through a schema, which indicates the data needed to extend the be-
haviour.

generator model In EMF and GMF terminology a model used to spec-
ify parameters of the transformation used to obtain the final code.
graphical definition model In GMF terminology the model which de-
fines the elements supported by a graphical editor. In particular it spec-
ifies shapes, containment boxes, nodes and connectors.
Graphical Editing Framework (GEF) Framework contained in Eclipse,
which permits the creation of sophisticated graphical editors according
to the model-view-controller paradigm.
Graphical Modeling Framework (GMF) Framework contained in Eclipse
which permits the creation of graphical editor for Eclipse Modeling
Framework (EMF) models. It is composed of a Runtime part, which
contains the building blocks, and of a Tooling part, which automates
the construction of graphical editors through the use of models and
transformations.

high-integrity system A system that should exhibit at least one of
these properties: safety (the system does not harm humans and en-

77

78 glossary

vironment), security (information should be manipulated only by au-
thorized entities), reliability (the system should function according to
its specification). (Definition inspired by http://www.cs.york.ac.uk/

hise/information.php)

incubation phase The phase of an Eclipse project in which process,
community and technology are developed to bring the project to ma-
turity. (Definition inspired by [75])

mapping model In GMF terminology the model which establishes, for
each element in an Ecore model, its graphical appearance (taken from
a graphical definition model) and its creation tool (taken from a tool
definition model).
MARTE (Modeling and Analysis of Real-Time and Embedded sys-
tems) UML profile for the specification and the analysis of real-time
systems.
Meta Object Facility (MOF) A language used to specify metamodels
and endorsed by the OMG. Notably, UML metamodel is specified us-
ing and shares core concepts with MOF.
metametamodel A model that describes a language to specify meta-
models.
metamodel A model that specifies a modeling language, in other words
a model of a language for models. (Definition inspired by [9])
model A simplification of a system built with an intended goal in
mind. The model should be able to answer questions in place of the
actual system. (Definition cited from [76])
Model Driven Architecture (MDA) An MDE initiative endorsed by
OMG that uses models in order to reach technological independence
from software platforms.
Model Driven Engineering (MDE) Approach to software engineering
that advocates the use of models and automated transformations in
order to develop software systems with increased quality and produc-
tivity in the face of increasing richness of functionalities.
model-view-controller paradigm for the realization of graphical user
interfaces that advocates the use of a model to store the data of interest,
of a view to show them to the user and of a controller to intermediate
changes and updates between them.

notational model In GMF terminology the model that describes how
elements in the semantic model should be displayed to the user.

Object Constraint Language (OCL) A formal language used to de-
scribe expressions on UML models. These expressions typically spec-
ify invariant conditions that must hold for the system being modeled
or queries over objects described in a model. (Definition cited from
[45])

Platform Independent Model (PIM) In MDA a model that represents
a software system abstracting away from technological choices and
details.
Platform Specific Model (PSM) In MDA a model that represents a
software system implemented on a particular software platform with
determined parameters. A PSM is apt for static analysis.
plugin The smallest unit that makes up an application built using
Eclipse.

http://www.cs.york.ac.uk/hise/information.php
http://www.cs.york.ac.uk/hise/information.php

glossary 79

programming language A notation to write programs, which in turns
express computations. (Definition cited from Chapter 1 of [74])

real-time system A system composed of hardware (in particular sen-
sors and actuators) and software that should monitor and control an
external environment. The actions of a real-time systems are subject to
temporal constraints.

scientific body of knowledge A set of sound and proved solutions
to recurrent problems shared by different application domains. The
quality of these solutions are assessed by a scientific community.
semantic model In GMF terminology the model that contains the data
of interest (for example an UML model).
source code Artifact that specifies a program expressed in some pro-
gramming language.
static analysis An automatic technique to infer approximate informa-
tion about execution of a program looking only at its specification (let
if be source code or a model).
system An interacting combination of elements viewed in relation to
function. (Definition cited from [77])
systems engineering Interdisciplinary approach and means to enable
the realization of successful systems. (Definition cited from [77])
Systems Modeling Language (SysML) UML profile designed for sys-
tems engineering.

tool definition model In GMF terminology the model which defines
the tools used in a graphical editor to create and manipulate shapes.
transformation The action of obtaining one or more target models
from one or more source models. Usually a target model is used to
lower the level of abstraction of a source model.

UML profile Lightweight mechanism provided by UML in order to
adapt the UML metamodel to specific needs. Simply put, UML pro-
files are packages containing stereotypes, which extend existing UML
metaclasses with additional information.
Unified Modeling Language (UML) A language promoted by OMG
to specify and describe software systems.
Universally Unique IDentifier (UUID) An identifier that is unique
across both space and time, with respect to the space of all UUID.
(Definition cited from [78])

view A work product (usually one or more models) that describes a
system according to some concerns of interest. A view conforms to a
viewpoint. (Definition inspired by [36])
viewpoint A work product (usually a series of models) that indicates
the concerns, the languages and the models that a view should address
and employ. (Definition inspired by [36])

A C R O N Y M S

ASSERT Automated proof-based System and Software Engineering
for Real- Time applications

CEA LIST Commissariat à l’Énergie Atomique – Laboratoire d’ Inté-
gration des Systèmes et des Technologies
CHESS Composition with Guarantees for High-integrity Embedded
Software Components ASsembly
CIM Computation Independent Model
CORBA Common Object Request Broker Architecture

DSL Domain Specific Language

EEF Extended Editing Framework
EMF Eclipse Modeling Framework

FP6 Sixth Framework Programme

GEF Graphical Editing Framework
GMF Graphical Modeling Framework

ID Identifier

JET Java Emitter Templates

MARTE Modeling and Analysis of Real-Time and Embedded systems
MDA Model Driven Architecture
MDE Model Driven Engineering
MDT Model Development Tools
MOF Meta Object Facility

OCL Object Constraint Language
OMG Object Management Group

PIM Platform Independent Model
PSM Platform Specific Model

QVTO Query/Views/Transformations Operational

RFP Request For Proposals

SVG Scalable Vector Graphics
SysML Systems Modeling Language

UML Unified Modeling Language
URL Uniform Resource Locator
UUID Universally Unique IDentifier

XMI XML Metadata Interchange
XML Extensible Markup Language

81

	Abstract
	Publications
	Contents
	Introduction
	Thesis organization
	Notation

	Model Driven Engineering
	An overview of Model Driven Engineering
	Models as means to specify systems
	Transformations as means to obtain implementation

	Model Driven Architecture
	Acknowledging scientific bodies of knowledge
	Summary

	Applying MDE in the real world
	Problem One: How to define DSL
	Definition of UML profiles
	MOF and UML
	Tools for creating DSL
	Additional considerations

	Problem Two: Proving the correctness of transformations
	Creating PIM from concern specific views
	Incremental PIM construction
	Number of metamodels

	Summary

	Technological investigation
	Reviewed tools
	Requirements
	DSL definition
	View management
	Effort spent on tool construction

	EMF and GMF
	DSL definition
	View management
	Effort spent on tool construction

	UML2Tools
	DSL definition
	View management
	Effort spent on tool construction

	MDT Papyrus
	DSL definition
	View management
	Effort spent on tool construction

	Evaluation
	Assessment of requirement satisfaction
	Obtaining synthetic rating
	Final ratings

	Considerations
	Summary

	Conclusions
	Architecture of GMF
	GMF Runtime
	GMF Tooling
	Dependencies

	Detailed characteristics of analyzed tools
	Some advices on EMF and GMF
	Extrinsic ID
	Shortcut mechanism

	Bibliography
	Glossary
	Acronyms

